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1 Scope 

This document consolidates the findings of our research efforts, benchmarking exercises, testing and 

algorithm selection processes leading up to the completion of Task 3: Algorithm Trade-off and Proof of 

Concept. The selected algorithms in this document will be further developed and integrated into a pro-

cessing system on a cloud computing infrastructure (Task 4), applied in the national demonstrations 

(Task 5) and showcased in the Early Adopter Use Cases (Task 6). All methodological decisions presented 

here are informed by a solid review of EO best practices and scientific publications.  

The thorough literature review is followed by algorithm experimental assessments and cross comparison 

of the best candidate methods over well selected test sites, which justify the algorithm choices. 

 

2 Forest Mask (FM) 

2.1 Theoretical background 

Forest masks are a central tool for remote sensing related research. They are essential for the assessment 

and monitoring of forest areas and thus make an important contribution to environmental studies and 

the conservation of biodiversity in forests worldwide. Using these masks, valuable information on forest 

cover can be extracted from remote sensing imagery and provide a comprehensive understanding of 

forest dynamics at different spatial and temporal scales. Remote sensing technologies such as satellite 

and airborne sensors have revolutionized the way the Earth's ecosystems are monitored and managed. 

In this context, forest masks refer to binary classification maps that distinguish between forested and 

non-forested areas within a given geographic region. The creation of these masks requires the applica-

tion of various image processing techniques and classification algorithms to remote sensing data such 

as multi-spectral and hyper-spectral imagery.  

The theoretical basis of these forest masks is based on the principles of image interpretation and classi-

fication. Traditional methods used spectral signatures that relied on the unique reflectance properties of 

different land cover types. More recently, however, more sophisticated techniques have been incorpo-

rated, including machine learning algorithms such as Random Forests, Support Vector Machines and 

Convolutional Neural Networks, to improve the accuracy and efficiency of forest mask generation. A 

crucial aspect of development is the consideration of temporal dynamics. Because forests are subject to 

seasonal changes, the ability to capture these fluctuations is essential for a comprehensive understand-

ing of forest ecosystems. In particular, the inclusion of time series analysis techniques and multi-tem-

poral satellite imagery enables the creation of dynamic forest masks. These can be used to provide more 

precise insights into the phenology of forests, disturbance events and recovery processes. Studies have 

demonstrated the effectiveness of forest masks in applications ranging from carbon sequestration as-

sessments to endangered species habitat monitoring. For example, in the work of Hansen et al. (2013) 

[AD45], forest masks derived from Landsat data were used to create a global forest change dataset that 

provides important information on deforestation and afforestation dynamics. 

In summary, the theoretical basis of forest masks in remote sensing involves a combination of spectral 

analysis, image classification algorithms and temporal considerations. The integration of different data 

sources and advanced analysis techniques contributes to the accuracy and applicability of these masks 

in environmental research. As technology evolves, the refinement of forest mask methods will undoubt-

edly enhance our ability to monitor and manage forest ecosystems on a global scale, supporting sus-

tainable development and conservation efforts. 
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Scientific Trade-Off Analysis 

Remote sensing technology has led to a diversification of approaches for creating forest masks, each 

with its strengths and limitations, depending on factors like desired accuracy, computational resources, 

and data availability. 

Spectral indices, such as the Normalized Difference Vegetation Index (NDVI), have been foundational in 

remote sensing applications for vegetation detection. Their simplicity and efficiency make them partic-

ularly attractive for large-scale applications, since they can be calculated on satellite data from Sentinel 

or Landsat. However, their effectiveness can be compromised under conditions of cloud cover or atmos-

pheric particulates, which affect the spectral signatures of vegetation [AD83]. Furthermore, these meth-

ods may struggle with mixed pixel issues, where a single pixel contains multiple land cover types, which 

could lead to a significant reduced classification accuracy [AD85]. 

A different approach could be a supervised or unsupervised classification approach. Supervised classifi-

cation techniques, including Random Forests and Support Vector Machines, rely on manual labeled 

training data to classify different land cover types. These methods have been praised for their flexibility 

and high accuracy in identifying various land cover types, including forests [AD82]. However, the re-

quirement for substantial, accurately labelled training data and the computational demands of these 

algorithms can be significant barriers to their application, especially in resource-constrained settings 

[AD84]. Unsupervised classification algorithms like k-means clustering on the other hand do not rely on 

gathering training data, instead they have the function to automatically group pixels regarding their 

spectral properties. In spite of its usefulness, the accuracy of unsupervised classification does not always 

match actual land cover types, and expert interpretation is required to adjust cluster assignments to 

meaningful categories [AD81]. 

More recent approaches use the advent of machine learning or deep learning. Due to them, highly 

accurate methods for land cover classification were introduced, capable of handling complex and big 

scale datasets. Furthermore, they can improve over time when additional data is gathered [AD86]. These 

methods, however, demand extensive data for training accurate AI-models, which makes them quite 

time costly to develop. Another problem which may limit accessibility especially for some smaller pro-

jects could be the considerable computing resources required to process large amounts of data. How-

ever, since the availability of training data is steadily increasing with the growing number of research 

projects using AI-based methods, it can be assumed that AI-driven classification will become much more 

common in the future. 

It can be concluded that all the approaches mentioned are suitable for creating forest masks. However, 

the accuracy of these is ultimately always determined by the availability of the required resources and 

the quality of the original data. In many cases, it can also be useful to combine the methods shown in 

order to further improve the results. 

 

2.2 Proof of Concept  

2.2.1 Methods selection 

The method chosen for creating the basic forest mask of 2017 involves generating accurate forest area 

statistics for Ethiopia by calibrating Global Forest Change (GFC) map products with high-resolution 

RapidEye-based benchmark maps, which have an accuracy of at least 89%. This process includes the use 

of forest-type dependent calibrated thresholds of tree cover density, identified by assessing the poten-

tial vegetation of Ethiopia to classify three main forest types. The calibration process involved creating 

100 GFC-based forest classifications using 1%-wise thresholds of tree cover percentage, followed by an 

accuracy assessment against the high-resolution maps based on 12,000 random points in test sites. The 
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optimal tree cover percentage thresholds were selected based on their fit and the balance between 

commission and omission errors. Finally, the GFC dataset for Ethiopia was refined by applying these 

thresholds, resulting in a calibrated forest map with a 30m spatial resolution for 2017, after correcting 

for forest gain and loss up to that year. 

The process of updating the 2017 forest mask involved integrating various datasets to identify areas of 

forest gain and loss. Utilizing a canopy height dataset by Lang et al. (2022) [AD92], areas were marked 

as forest gain if tree heights exceeded 5 meters, where previously no forest was recorded. Further, the 

analysis included Sentinel-2 data to evaluate the Normalized Difference Vegetation Index (NDVI) trends, 

with specific thresholds set for determining forest gain and loss based on NDVI values. Only pixels meet-

ing all criteria across the datasets were classified accordingly. The resultant forest gain and loss data 

were then applied to revise the initial forest mask, thus providing a refreshed forest classification for 

Ethiopia by 2020. However, the methodology faced uncertainties, particularly due to potential inaccura-

cies in canopy height measurements and NDVI trends, which could be affected by cloud coverage, thus 

introducing possible errors in the forest classification process. 

 

2.2.2 Synthesis 

Finally, an alternative method for creating a forest mask for 2017 was developed as part of this project. 

This method is based on the fact that a good data basis was already available with the forest mask by 

Hansen et al. (2013) [AD54], which could be further improved by the selected calibration process. The 

availability of high-resolution data was another deciding factor in the choice of process. For the update 

to 2020, the vegetation index-dependent process was also integrated into the forest mask. The com-

bined method has already been applied in the entire Ethiopian study area as well as in the individual 

sub-study areas. Satisfactory results were achieved in initial qualitative comparisons. 

 

2.3 Final Specification of EO solution 

In order to produce an updated forest mask, the user needs the calibrated forest mask from 2017, a 

shapefile of the area of interest and Sentinel-2 time-series data. The user defines the desired year for 

which the updated forest mask should be produced and calculates the maximum NDVI and the change 

between the time steps of the old and new forest mask based on Sentinel 2 data. The CHM layer from 

Lang et al. (2022) [AD92], which is required for the growth of the forest, is already implemented and 

hosted on the platform and does not need to be loaded separately. This is further described under 5.3.1 

in this document. 

Involving CHM, the NDVI maximum and the NDVI, the algorithm then classifies the AOI according to the 

following pixel value criteria (Table 1): 

Table 1. Categorisation of forest loss and gain for FM 

Forest loss Forest gain 

NDVI change t0-t1 < -0.15 

Inside of 2017 Forest Mask 

 

NDVI change  t0-t1 > 0.3 

NDVImax > 0.6 

Tree height > 5m 

Outside of 2017 Forest Mask 

 

 

Unaffected forest area will stay classified as forest. 
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The output file will be an 10m resolution raster of forest and non-forest (Figure 1, Figure 2).  

 

Figure 1. Result forest cover 2017 

 

Figure 2. Result forest cover 2020 
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3 Forest Area Net Change Rate (FNC) 

3.1 Theoretical background 

In general terms, the forest area net change rate refers to the total change in the amount of forested 

land over a given period of time. It is usually expressed as a percentage and reflects the balance between 

processes such as deforestation, afforestation, reforestation and natural disturbances within a given ge-

ographical forest region.  

Deforestation refers to the permanent removal of forests to make the land available for other uses, such 

as agriculture, urban development, or mining. This process has profound ecological impacts, including 

loss of biodiversity, disruption of water cycles, soil erosion, and contributing significantly to climate 

change through the release of stored carbon dioxide. According to the Food and Agriculture Organiza-

tion of the United Nations (FAO), approximately 10 million hectares of forest are lost annually, a rate 

that underscores the urgent need for global conservation and sustainable land use practices [AD87]. 

Reforestation on the other hand, involves replanting trees in areas where forests have been cut down or 

destroyed, usually with the aim of restoring the original forest cover. Reforestation can be natural, where 

the forest regenerates itself over time, or active, involving the deliberate planting of trees. It helps in 

rebuilding habitats, restoring biodiversity, and enhancing ecosystem services such as water regulation, 

soil protection, and carbon storage. Research indicates that reforestation can significantly contribute to 

the global carbon budget, offering a vital lever for climate change mitigation [AD88]. 

While afforestation addresses the process of planting trees on lands that have not been forested for at 

least 50 years. It serves as a strategic tool for carbon sequestration, enhancing biodiversity, and restoring 

degraded lands. Afforestation efforts can mitigate the effects of deforestation and climate change by 

absorbing CO2 from the atmosphere, thus playing a crucial role in achieving the goals set by the Paris 

Agreement to combat climate change. For instance, the "Bonn Challenge" aims to restore 350 million 

hectares of degraded and deforested lands by 2030, highlighting the global commitment to afforesta-

tion and reforestation initiatives [AD89]. 

Deforestation primarily contributes to climate change and environmental degradation, afforestation and 

reforestation represent hopeful strategies for ecological restoration and climate mitigation. Efforts to 

combat deforestation, promote afforestation, and facilitate reforestation are integral to achieving the 

United Nations Sustainable Development Goals (SDGs), particularly those related to life on land (SDG 

15), climate action (SDG 13), and sustainable cities and communities (SDG 11). The FNC metric provides 

insight into the condition and sustainability of forest ecosystems.  It therefore serves as a key indicator 

for environmental assessments and continuous monitoring allows an understanding of the impact of 

human activities and natural processes on global forest cover to be inferred. 

Scientific Trade-Off Analysis 

In principle, the methods used for the FNC overlap strongly with the methods used for the forest mask. 

In order to be able to determine forest growth or loss, a clearly defined section of a forest area is required 

from which changes can be recorded.  

Therefore, in principle, the methods already mentioned can be used to create forest masks in order to 

ultimately classify several forest areas over the desired time period. By directly comparing these areas in 

a time-series analysis, statements can then be made about forest loss and forest gain. 

The basic approach for tracking would therefore be to keep track of NDVI changes. This method allows 

for the effective monitoring of changes over time, highlighting areas of deforestation or reforestation. 

Applications of NDVI in forest management include detecting illegal logging activities, assessing the 

impacts of climate change on forest ecosystems, and evaluating reforestation efforts. Studies have 
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shown that NDVI is particularly effective in tropical forests, where the dense canopy and diverse ecosys-

tems present unique monitoring challenges [AD83, AD91]. In general, however, it should be noted that 

NDVI calculations, as already mentioned, can be susceptible to disturbances such as cloud cover and 

therefore data quality must always be taken into account. 

Another approach can be the use of Light Detection and Ranging (LIDAR) systems. LIDAR systems, by 

emitting pulses of laser light and measuring the time they take to return after hitting the surface, provide 

precise three-dimensional information about forest structure, including canopy height, biomass, and 

even ground-level characteristics under dense canopy cover [AD90]. The height information obtained in 

this way can then be used as Canopy Height Model (CHM) in a time comparison to make statements 

about the disappearance or growth of forest in the observation area. However, similar to the use of 

remote sensing data to determine the NDVI, the method is susceptible to interference from clouds. In 

addition, atmospheric haze can attenuate the signal before it reaches the ground, leading to inaccuracies 

in the information.  

Another aspect is that high-resolution LIDAR measurements are very expensive and are therefore hardly 

available for larger areas.  

Both methods mentioned can be used to recognise changes in forest areas. However, it is always nec-

essary to weigh up which data is available in which context and in which quality and whether it is not 

more practical to combine the methods in the selected project. This could compensate for mutual weak-

nesses and improve the final result. 

3.2 Proof of Concept  

3.2.1 Methods selection 

The methodology employed to assess FNC involves a comprehensive approach that integrates various 

datasets to quantify forest gains and losses between distinct forest classifications or across temporal 

intervals. This process adheres to an updated forest mask methodology, deploying two divergent tech-

niques to delineate forest dynamics accurately.  To determine forest gains, the method incorporates 

three distinct datasets: a global canopy height dataset to assess tree heights, yearly maximum NDVI 

trends derived from Sentinel-2 data, and an additional NDVI layer from a specific year. Forest gain is 

identified through a composite analysis where specific criteria across all three datasets must be met, and 

this gain is then isolated to areas previously non-forested as of a baseline year. Conversely, forest loss is 

detected through analysis of negative NDVI trends, with losses classified within the confines of the initial 

forest mask to accurately represent net changes.  

3.2.2 Synthesis 

There are various ways to determine forest loss or growth. In particular, vegetation indices and canopy 

height data can provide sources of information for the Forest Area Net Change Rate of change of forest 

area. This project attempts to increase the accuracy of the final product by using combined approaches. 

However, this requires certain data to be available. In order to be able to distinguish the increment 

outside the forest areas over time, it is necessary that a forest mask is available. It is also necessary that 

a CHM of the relevant study area is available. If this is the case, results can be obtained quickly with this 

method, even in large study areas. 

Though this process can be subject to uncertainties, notably in canopy height measurements and NDVI 

values potentially affected by cloud cover, which may introduce classification errors. 
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3.3 Final Specification of EO solution 

To calculate the FNC, the user must provide an area of interest (AOI) and a forest mask that represents 

the forest areas within the study area before the change. The mask must be available as a shapefile. The 

AOI can either be defined as a polygon selection on the platform itself or also imported as a shapefile.  

The CHM layer from Lang et al. (2022) [AD92], which is required for the growth of the forest, is already 

implemented and hosted on the platform and does not need to be loaded separately. 

The user defines the desired time period in which the FNC calculates the maximum NDVI and the change 

between the time periods from Sentinel 2 data. Further described under 5.3.1. In this document. 

Involving CHM, the NDVI maximum and the NDVI, the algorithm then classifies the AOI according to the 

following pixel value criteria (Table 2): 

Table 2. Categorisation of forest loss and gain for FNC 

Forest loss Forest gains 

NDVI change t0-t1 < -0.15 

Inside of 2017 Forest Mask 

NDVI change  t0-t1 > 0.3 

NDVImax > 0.6 

Tree height > 5m 

Outside of 2017 Forest Mask 

 

Unaffected forest area will stay classified as forest. 

The output file will be an 10m resolution raster, including a class value for forest gain, forest loss and 

forest area unchanged (Figure 3).  

 

Figure 3: Visualisation of FNC for Ethiopia, 2017-2020 
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4 Above-Ground Biomass Stock (AGB) 

4.1 Theoretical background 

Biomass is vital for the removal of carbon dioxide (CO2) from the atmosphere, predominantly through 

the processes of photosynthesis and respiration. It encompasses the above-ground and below-ground 

components of plant life, playing a significant role in the exchange of large quantities of CO2 between 

the atmosphere and terrestrial ecosystems [AD55]. According to Pan et al. (2011) [AD52], it is estimated 

that the world's forests store about 861 gigatons of carbon - 44 percent in the soil (up to one meter 

deep), 42 percent in living above-ground and below-ground biomass, 8 percent in dead wood, and 5 

percent in litter [AD52]. 

In the last decades the carbon dioxide concentration in the Earth's atmosphere has been steadily in-

creasing due to human activities, such as burning fossil fuels and deforestation. This rise in carbon diox-

ide levels has disrupted the natural carbon cycle and contributed to global climate change. As mentioned 

before, especially forest ecosystems play a vital role in the carbon cycle by absorbing carbon dioxide. 

Tropical forests, in particular, act as significant carbon reservoirs. Estimating forest carbon stocks is there-

fore not just only crucial for the understanding of carbon exchange between forests and the atmosphere 

but also for the assessment of impacts of deforestation and forest degradation along with the prediction 

of future changes in carbon stocks. It is additionally helpful for the development of new sustainable 

forestry planning methods. 

In order to estimate the carbon stock of forests, researchers tend to take a look at the forest above 

ground biomass (AGB). Accurately estimating forest biomass is crucial for assessing forest productivity, 

sustainability, and carbon emissions. It provides insights into the amount of carbon that can be released 

when forests are cleared or burned. Biomass estimation helps to understand the potential carbon se-

questration capacity of forests. It is essential for various applications, including timber extraction, mon-

itoring changes in carbon stocks, and understanding the global carbon cycle [AD48]. 

Scientific Trade-Off Analysis 

Estimating forest biomass can be done through various methods, where field measurements and remote 

sensing-based methods play a large role. With field measurements the AGB can be assessed through 

both destructive and non-destructive methods. The destructive approach, known as the harvest method, 

involves cutting down and weighing trees. This method is often used in areas with uniform tree sizes, 

such as pine plantations, and estimates are extrapolated based on a selected sample. However, the har-

vest method has limitations due to its destructive nature, time-consuming process, high costs, and po-

tential impact on endangered plants and animals. Non-destructive methods offer alternative ap-

proaches, such as using allometric equations. Allometric equations utilize tree measurements like diam-

eter at breast height (dbh) and height, although they are more applicable in homogeneous forests or 

plantations with similar-aged stands. These equations may have limited utility in heterogeneous forests 

where tree characteristics vary significantly [AD53]. 

In addition to field measurements, technologies from earth observation (EO) are being used for biomass 

determination. EO methods not only yield the advantage of covering large areas but also the possibility 

of monitoring poorly accessible regions of interest. There are three main remote sensing-based ap-

proaches for biomass estimations based on different input datasets, namely light detection and ranging 

(LiDAR), Radar (SAR)- and optical remote sensing data [AD54]. 

LiDAR is an optical technique used to determine the position and distance of objects in space. It operates 

on a similar principle to radar, but instead of microwaves, LiDAR utilizes beams of ultraviolet, infrared, 

or visible light [AD47]. Using these focused short-wavelength laser pulses, LiDAR sensors are able to 

penetrate the forest canopy in a more effective way then than other systems [AD49]. This allows direct 
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and more accurate measurements of canopy structure variables, such as canopy height distributions, 

which are needed for AGB estimations. However, the use of LiDAR at a national scale is often not feasible 

due to its disadvantage in temporal and spatial coverage. As of now, global continuity in LiDAR meas-

urements has been challenging to achieve due to the constraints of both airborne LiDAR and spaceborne 

LiDAR platforms. Airborne LiDAR data is only available in select small regions, primarily due to the high 

costs involved in conducting airborne LiDAR flight missions [AD46]. In the future LiDAR may have the 

potential of becoming a low-cost alternative at lower spatial resolution. 

Another possible approach is a radar (SAR)-based biomass assessment, whereby the backscatter from 

radar-satellites is directly correlated to in-field estimated biomass values. Microwave active sensors, such 

as SAR, provide valuable information about the dielectric and structural properties of objects, soil sur-

faces, and plants. One key advantage of microwave radar sensors is their ability to penetrate through 

clouds, making them weather and daytime independent and enabling image acquisitions in even the 

cloudiest regions on Earth. This feature sets radar imagery apart from optical imagery, which can be 

hindered by cloud interference [AD51]. This approach however is not suitable for all forest types and 

depends also on the type of the radar data. 

A final approach is using canopy height information that can be derived from airborne or even space-

borne data, since the height of trees is often correlated to the biomass of trees. In contrast to these 

active sensors, passive sensors can also be used to estimate biomass. Passive remote sensors are able 

to measure different wavelengths of reflected solar radiation. In doing so, they provide two-dimensional 

information that indirectly relates to biophysical properties of the vegetation [AD50]. 

In all cases, sufficient, i.e., qualitatively and quantitatively adequate, data from local forest inventories 

are needed as the with the aforementioned methods captured parameters, such as tree height, need to 

be calibrated by linking ground measurements with remotely sensed data [AD54]. Therefore, these tech-

niques cannot directly acquire AGB estimations. The better the field data and the better the EO data, the 

higher the TIER level and thus the higher the accuracy of the biomass estimate can be. 

4.2 Proof of Concept  

4.2.1 Methods selection 

Due to the complexity of the biomass calculation, the product method is based on a combination of 

freely available field inventory data from open source databases and remote sensing data as well as the 

availability of allometric equations from our own previous research at RSS and scientific publications 

(Figure 4). 

First, a land cover classification was used to divide the forest classes into different biomes. For each of 

these forest biomes, all available information on tree species was collected from the scientific literature. 

The tree species were then checked for their availability in an open-source tree database and their bio-

mass-relevant properties were extracted. Regression analyses were then carried out between tree height 

and breast height diameter. The resulting reference equations were then used in the biome-specific AGB 

allometry to calculate an average biomass estimation for the study areas using a global surface height 

model. 
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Figure 4. AGB-Product workflow chart 

 

 

4.2.2 Synthesis 

As already mentioned, estimating biomass is a major challenge. The complexity of the chosen method 

reflects this. In order to obtain a meaningful final result, a lot of time must be invested in literature 

research. The method is also heavily dependent on freely available tree inventory data, which is required 

as a key input. In addition, allometries calibrated using local trees are also available for selected tree 

types.  Finally, the timeliness of the results always depends on the date of the selected CHM. The method 

has already been applied to the entire study area in Ethiopia and shows valid results in initial qualitative 

comparisons with other large-scale biomass estimates. However, automated implementation within the 

scope of this project is proving difficult due to the complexity and labour required. 

 

4.2.3 Final Specification of EO solution 

In principle, a large number of different input types are required for processing.  

The respective biome types are first imported with the help of a vegetation classification by Friis et al. 

(2010) [AD94] which was read in as a vector file. 

For the relevant characteristics (diameter at breast height, height) of the biomimetic tree species, the 

Tallo database by Jucker et al. (2022) [AD96] is used. This is used to determine the regression analyses 

between diameter at breast height and height, which are inserted into the respective biomass allome-

tries. 

For the calculation, biomass allometries were determined for each biome based on a literature search.  

Moist Afromontane Forest [AD95].: 

𝐴𝐺𝐵 = 0.0673 ∗ (𝑊𝐷 ∗ 𝐷𝐵𝐻2 ∗ 𝐻)0.976 
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Dry Afromontane Forest [AD97]: 

𝐴𝐺𝐵 = 0.1014 ∗ (𝑊𝐷 ∗ 𝐷𝐵𝐻2 ∗ 𝐻)0.9510 

Combretum-Terminalia Woodland, Acacia-Commiphora Bushland [AD93]: 

𝐴𝐺𝐵 = 0.0763 ∗ (𝐷𝐵𝐻2.2046 ∗ 𝐻)0.4918 

The aforementioned canopy height layer with a resolution of 10 metres serves as the basic geodata for 

the following calculation in the algorithm. 

The product must then be covered with a forest mask and multiplied by literature-based tree density 

values. 

The final output raster shows an estimate of the biomass in tonnes/ha per pixel (Figure 5). The pixel 

resolution is based on that of the CHM by Lang et al. (2022) [AD92] and is therefore 10m. 

 

Figure 5. Final AGB-Estimation, 2020 

 

 

5 Forest Condition Monitoring (FCM)  

5.1 Theoretical background 

The aim of sustainable forest management (SFM) is to ensure that forests supply goods and services to 

meet both present-day and future needs and contribute to the sustainable development of communi-

ties. One of the key elements of SFM is forest health and vitality [URL01]. The term "forest condition" 

comprises not only vitality but also forest damage or disturbance and thus represents a combination of 

both. To effectively maintain and improve forest condition, long-term forest monitoring is crucial to 

understand past, current and future forest condition dynamics [AD56].  
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Forest ecosystems are facing increasing anthropogenic pressures and disturbances at different scales, 

from local to global. In particular, the climate-induced increase in droughts is contributing to high levels 

of stress on forest stands worldwide, making them more susceptible to disease and parasites. As these 

challenges continue to increase, traditional terrestrial in situ monitoring approaches for forest ecosys-

tems have made significant progress. However, they often rely on both labor-intensive methods and, in 

some cases, subjective indicators to assess forest health. Especially in remote areas, these methods are 

labour intensive and costly. In response to these limitations, remote sensing has emerged as a powerful 

tool for assessing forest health, enabling researchers and resource managers to collect valuable data 

over large areas efficiently. It can often offer a transformative solution that can bridge gaps by providing 

the ability to monitor forest health indicators at different spatial and temporal scales in a more frequent 

and cost-effective way. Satellite remote sensing provides a comprehensive and non-invasive method for 

monitoring forest conditions. The Sensors aboard satellites capture data across different wavelengths, 

allowing for the extraction of valuable information about various aspects of forests, such as vegetation 

health, biomass, and land cover changes. Spectral bands sensitive to chlorophyll content, water stress, 

and other indicators are particularly useful in assessing the overall health of forested areas. 

According to Lausch et al. (2016) [AD44], the ability to monitor forest health indicators with remote 

sensing data depends on several factors. Both on the characteristics of forest features and their shape, 

density and distribution in space and time, as well as on the spatial, spectral, radiometric, angular and 

temporal resolution of RS sensors or multi-sensor systems. The choice of modelling technique (classifi-

cation or estimation of biophysical/chemical variables) and entity representation (pixel-based or (geo-

graphically) object-based) also plays a role.  And finally, how well the RS algorithm and its assumptions 

fit the remote sensing data and the plant characteristics and trait variations in forest ecosystems. 

One of the most common approaches to monitor forest health is the vegetation indices (VIs) based 

approach. It involves the use of specific mathematical combinations of spectral bands, which can be 

obtained free of charge from Sentinel-2 data, to obtain meaningful information about the condition and 

characteristics of vegetation. One of the most used and most basic vegetation indices is the Normalized 

Difference Vegetation Index (NDVI). The NDVI is calculated as the normalized difference between the 

near infrared (NIR) and red (RED) reflectance values and provides a quantitative measure of the amount 

and strength of green vegetation. NDVI values range from -1 to +1, with higher values indicating health-

ier and more lush vegetation. The Enhanced Vegetation Index (EVI) is another vegetation index that 

addresses some of the limitations of NDVI, particularly in areas with dense vegetation or in the presence 

of atmospheric influences. EVI incorporates additional spectral bands and atmospheric correction, re-

sulting in a more robust indicator of vegetation health. These methods can also be combined very well 

with time series data. This allows researchers to observe both positive and negative changes in forest 

health over long periods of time.  

This is beneficial as monitoring forest health is a crucial aspect of achieving the Sustainable Development 

Goals (SDGs), as it impacts several key aspects of sustainable development in different ways. Firstly, 

forests are crucial for SDG 13 (climate action) as they serve as carbon sinks and thus make an important 

contribution to climate change mitigation. Monitoring the state of forests enables the assessment of 

carbon sequestration, deforestation rates and the state of ecosystems and provides important data for 

sound climate change mitigation strategies. In addition, SDG 15 (Life on Land) is closely linked to forest 

health monitoring, as forests harbour biodiversity, support ecosystems and contribute to the conserva-

tion of endangered species. Therefore, monitoring allows potential threats to biodiversity to be identi-

fied so that timely action can be taken. In addition, sustainable forest management practices that rely 

on monitoring are in line with SDG 12 (Responsible Consumption and Production) as they promote the 

sustainable use of terrestrial ecosystems. In essence, forest health monitoring becomes a linchpin for 

the interlinked SDGs and plays a crucial role in combating climate change, conserving biodiversity and 

promoting sustainable use of forest ecosystems. 
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5.1.1 Vitality 

To date, there is still no clear and universally agreed definition or conception of forest vitality or forest 

health [AD57, AD58]. There can be found several definitions for vitality in the literature [AD59]. One 

example comes from the International Society of Arboriculture (ISA), where vitality is the overall health 

and ability of a plant to deal effectively with stress [URL02]. The vitality of a plant is a theoretical concept 

and cannot be measured directly. The optimal or maximum tree vitality is not known. Only the minimum 

vitality of a plant, when it is dead can be determined clearly in most cases. Consequently, only relative 

changes of suitable indicators can be measured to observe tree vitality. This vitality principle is schemat-

ically represented in Figure 6 for different stress cases [AD59]. 

Vitality is contingent on stress. Assessing the effects of external stress is important since it's an important 

criterion in most vitality concepts. Stress is defined as a significant deviation from the optimal condition 

for life. The longer the stress lasts, the weaker the vitality becomes [AD60]. The plant reacts to stress with 

increased efforts to repair damage (Figure 6, Case 1-3). After this action usually a recovery phase follows 

(Figure 6, Case 1 and 2). When stress is prolonged, the plant´s ability to cope with or to survive further 

stress decreases and the vitality declines (Figure 6, Case 2 b). Once a certain point is exceeded, irreversi-

ble damage occurs or the plant dies (Figure 6, Case 3) [AD59]. 

 

 

Figure 6. Tree vitality schema with the impact of stress [AD59] 

 

To assess forest vitality informative and cost-effective methods to measure objective indicators are 

needed. The indicators should be suitable to capture the symptoms of deteriorated forest health. Forest 

vitality can be assessed on different levels. 

At the plant cell level biochemical indicators like phytohormones or enzymes may best reflect the re-

sponse of trees to different stressors [AD60]. But since these indicators cannot be collected for large 

areas and are very costly, they are not suitable for monitoring the vitality of a forest. 

Field surveys are of great importance and a well-established approach for data collection in forest mon-

itoring. The challenge in field measurements is to measure a suitable vitality indicator and the intensity 

and duration of the stress influence. Examples for common vitality indicators in field studies are crown 

foliage, growth in height, diameter or volume and leaf properties such as photosynthesis and nutrients 
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[AD59, AD61]. Since the conventional methods of collecting such data in the field are costly, difficult, 

partly subjective and on a smaller scale, there is a need for a more appropriate approach to monitor 

large forest areas [AD58]. 

This is where EO methods come into play, as they are the only practicable time- and cost-efficient tech-

nology for monitoring forest vitality for extensive and inaccessible regions and on a timely and consistent 

basis [AD62, AD63, AD64]. This data can be related to field observations, which is still essential for ground 

validation [AD57]. Many studies demonstrated the suitability of remote sensing data to monitor forest 

health [AD57, AD58]. Various types of airborne and satellite-based sensors such as photographs, multi- 

and hyperspectral images, radar and lidar have been used for this purpose [AD65]. 

Recent sensors like Sentinel-2 are suitable for forest vitality monitoring since it collects multispectral 

data in a high temporal and spatial resolution with global coverage. Sentinel-2 provides 10 suited spec-

tral bands covering the visible to the short-wave infrared (SWIR) spectrum (490 nm - 2190 nm) [URL03]. 

Measuring the spectral signature of plants give insights in their biochemical, physical and physiological 

properties. The spectral signature of a plant is primarily defined by its biochemical components like 

pigments, lignins and water content. In the optical range of the spectrum the reflected radiation is pri-

marily influenced by the pigments. In the red edge region, leaf pigments and cellulose become increas-

ingly transparent for wavelengths of the NIR [AD66]. The red edge is also particularly useful for drawing 

conclusions about chlorophyll content, which is a good indicator of photosynthetic activity, nutrient 

availability and the developmental stage of the vegetation [AD67]. In the near infrared (NIR) range of 

the spectrum the vegetation reflectance is influenced by its morphology. The SWIR wavelengths are 

sensitive to the water content of the vegetation. Physiological properties of vegetation are reflected in 

its vitality, phenology and stress level and depend on the local availability of nutrients, water and light. 

By measuring the spectral reflectance, conclusions can be drawn in this respect. Since remote sensing 

sensors collect data from a nadir perspective, the tree crown and its canopy are in focus [AD66, AD68]. 

As the effects of stress are often reflected by changes in tree crown condition, the crown characteristics 

are considered good indicators of tree health [AD69]. 

To improve the detection of the vegetation signal, so-called vegetation indices (VI) have been developed 

and are used to estimate biophysical forest properties [AD64]. VI are simple, robust and well-researched 

techniques for quantitatively extracting vegetation quantity and vitality from multispectral remote sens-

ing data [AD64, AD66]. Vegetation has a characteristic spectral behaviour with a high contrast between 

the red and NIR spectral regions. As a rule, the stronger this difference, the higher the amount and 

vitality of the vegetation. When vegetation senesces, the reflection in the NIR decreases and increases 

in the red wavelength range, which is why the difference and thus the VI value decreases [AD66]. To 

isolate or amplify the vegetation signal and minimise non-vegetation influences, typically at least two 

spectral bands of these wavelengths are combined for VI calculation [AD66, AD70]. Based on these spec-

tral ratios, the first VI were developed as simple ratio-based indices, such as the widely used "Normalized 

Difference Vegetation Index" (NDVI) [AD71]. Table 3 gives an overview of the most important multispec-

tral VI. Each VI is intended to highlight a particular vegetation property. For this purpose, VI are devel-

oped using empirical laboratory measurements of this property and correlation analyses with remote 

sensing data [AD65].  

5.1.2 Disturbance 

The global forest health is declining, with the main drivers being climate change, air pollution and in-

creasing human activities [AD65]. These drivers led to increased rate of vegetation disturbances and 

mortality across all biomes and plant functional types on all vegetated continents. For this reason, large-

scale condition monitoring is particularly important to understand changes in the condition of forest 

ecosystems [AD68]. 
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There is no single definition for a disturbance that satisfies all scientific and societal questions, but it can 

be described as a negative deviation from the long-term phenology and thus a decrease in vitality [AD68, 

AD72]. Disturbances are an integral part in forest ecosystems, influencing the stand structure and re-

generation [AD72]. Plants are regularly exposed to stress, as these site-bound organisms are dependent 

on a variety of environmental influences and stressors. Next to abiotic stressors such as air pollution, 

droughts, fires, floods and storms, biotic stressors like pathogens, insects and invasive species and an-

thropogenic causes such as pollution and deforestation place strain on the vegetation and can cause a 

decrease of vitality [AD58, AD61, AD65, AD69]. In most cases, stressors do not act individually, but several 

at the same time, whereby the interactions can be synergic, antagonistic, or overlapping. This, and the 

different ways in which individual plant species react to different stressors make it difficult to assign 

plant symptoms to specific stressors [AD61, AD73]. 

To detect vitality disturbances with remote sensing sensors, the stress symptoms must result in a suffi-

ciently large change in reflection for a sensor to measure them. Typical symptoms of deteriorated forest 

health causing a change in spectral reflectance are changes in pigment and foliage structure up to com-

plete discoloration, defoliation or even dieback [AD65, AD68]. In a stressed leaf, the chlorophyll content 

decreases and the remaining pigments, such as xanthophyll and carotene, cause a yellow-red discolour-

ation and a flattening of the spectral curve [AD66]. Significant reflectance changes can also be caused 

by burnt material, bare ground or a vertical or horizontal restructuring of the vegetation because of the 

disturbance [AD68].  

The detectability of vitality disturbances depends on the spectral, spatial and temporal characteristics of 

the disturbance and the object of interest (from single tree level up to forest level). Since disturbances 

represent a decrease in vitality, the same spectral ranges described in 5.1.1 are suitable for detecting 

these symptoms. To fit the spatial dimensions of the disturbances under investigation, the spatial reso-

lution of the selected data basis is crucial. Considering the temporal dynamics of disturbances substantial 

challenges arise for their detection [AD68]. In forest ecosystems, changes can be divided into three clas-

ses: seasonal changes that affect plant phenology caused by temperature and rainfall interactions, grad-

ual changes that follow a trend caused for example by climate variability or land management, and 

abrupt changes caused by disturbances [AD74]. Depending on the type of stressor, the vitality decrease 

may occur immediately or over a period of years. Compared to abrupt disturbances such as forest fires, 

slow-acting stressors such as drought are more difficult to detect. Thus, depending on the stressor pro-

cess, a suited time scale and data basis are fundamental for successful detection. Since the occurrence 

of abrupt disturbances is often followed by a rapid recovery of surviving or growing colonising plants, a 

sufficiently high temporal resolution is important for successful disturbance detection. The sensor choice 

plays a central role considering all these aspects [AD68]. 

From a technical perspective, disturbances are changes in vitality which can be identified by analysing 

differences between two or multiple remote sensing acquisitions taken at different times. These changes 

can be measured in terms of frequency, intensity, their spatial and temporal extent, stability, and rates. 

Bi-temporal methods, which compare two images, are the change detection methods with the longest 

application history and often only distinguish between changed and unchanged features. For example, 

the widely used and robust change vector analysis (CVA) derives additional information about the 

change, such as the change intensity and direction of the spectral behaviour. 

For long-term monitoring of forest development, many studies use multi-temporal data sets, which have 

a low temporal resolution of one observation or less per year. This change analysis methodology is called 

trajectory analysis and is suitable for studying long-term trends, but not seasonal patterns and disturb-

ances. 

Since both time scales are not suitable to detect short- and long-term disturbances, long-term time 

series with a high temporal resolution are the best option. Table 3 compares the three change detection 

approaches in more detail with each other. In remote sensing, time series are data sets consisting of a 
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series of images taken of the same area at different times [AD75]. To detect disturbances, often VI time 

series are used to detect deviations from phenology and vitality changes. With the increasing availability 

of high-resolution, multi-spectral sensors with high temporal resolution like Sentinel, Terra, Landsat, and 

RapidEye, VI time series have become a widely used tool for analysing forest vitality dynamics [AD76, 

AD77]. The choice of a suitable VI is crucial, especially for global applications. Two widely used spectral 

indices for condition monitoring are the NDVI and the EVI, described in 5.1.1 [AD75. AD76]. Depending 

on the temporal resolution of the platform and the local cloud cover, the observation frequency can vary 

greatly. This can result in irregular VI time series with large gaps after, for example cloudy pixels have 

been filtered to remove outliers and noise. As many time series analysis methods are only applicable to 

regular time series, missing values are often interpolated in the pre-processing, which can lead to poor 

performance and undesirable bias in the results [AD75. AD76]. 

A suitable time series analysis method must therefore be able to deal with irregular time series and to 

filter out disturbances from phenology and trends. A widely used and established method for time series 

analysis in remote sensing that meets these requirements is the "Breaks For Additive Seasonal and 

Trend" (BFAST) method. It decomposes a time series into its seasonal, trend and remainder components 

and detects breakpoints as abrupt changes by using statistical change detection methods. With BFAST, 

disturbances can be characterized by their magnitude, date and direction, with the need to select a 

threshold for statistical significance, but without the need for selecting a reference period or change 

trajectory. This, and the fact that it can be flexibly applied to different data types and sensors, makes 

BFAST suitable for monitoring and alarm systems. By now, the method has been successfully applied to 

VI time series in forest ecosystems in numerous studies and, according to Verbesselt et al. (2010), is able 

to detect changes of > 0.1 NDVI with seasonal amplitudes of up to 0.5 NDVI [AD74]. 

Next to the BFAST method other time series methods exist:  

• Chávez (2022) npphen R library: no terra support, raster based, worse than bfast [AD78] 

• Simoes (2021) sits R library: not suited for our worflow, worse than bfast [AD79] 

• Ghaderpour (2020) JUST python library [AD76] 

Table 3: Comparison of change detection approaches [AD75] 

 Bi-temporal analysis Trajectory analysis Time series analysis 

Date of change Sometime between 

both recording times 

Rough estimation, not 

exact 

With good temporal 

precision, depending 

on the time series den-

sity 

Advantages small data volume; 

many algorithms; com-

putationally efficient 

moderate data volume; 

good balance of out-

come and effort; trends 

and abrupt changes 

detectable 

detailed understanding 

of temporal dynamics, 

seasonal effects, inter- 

& intra-annual dynam-

ics detectable; all ob-

servations used; no 

scene selection or 

compositing required; 

almost gapless process 

characterization; op-

tion of time series de-

composition 
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 Bi-temporal analysis Trajectory analysis Time series analysis 

Disadvantages  processes and their 

spatio-temporal char-

acteristics are not de-

tectable; thresholding 

required to separate 

change from no-

change 

data selection and/or 

compositing required; 

areas of frequent cloud 

coverage; seasonal var-

iation & dynamics are 

not detectable; data 

availability in some re-

gions 

big data volume; com-

prehensive prepro-

cessing requires auto-

mation; data availabil-

ity in some regions, 

computationally very 

inefficient 

Methods CVA, Post Classifica-

tion Comparison, sus-

tained change 

LandTrendr BFAST, BFAST Lite, 

fastCPD 

 

Scientific Trade-Off Analysis 

Based on the previous analysis and preliminary results, we compare the advantages and disadvantages 

of the following three methods: sustained change, BFAST Lite, and fastCPD.  

Sustained change is a bi-temporal analysis method. Its advantages are that it requires only two images 

to compare and detect changes. However, this method is extended to incorporate more time steps with 

minimal additional computational complexity. For two images at times 𝑛  and 𝑛 − 1,  𝑡𝑛 and  𝑡𝑛−1 re-

spectively, the percentage change, Δ𝑌𝑝𝑒𝑟𝑐, is defined at each pixel by the equation  

Δ𝑌𝑝𝑒𝑟𝑐,𝑛 = (𝑡𝑛 − 𝑡𝑛−1)/𝑡𝑛−1 ∗ 100 

 

The above procedure is computed for all time-steps. The result would be a vector of percentage changes, 

i.e., Δ𝑌𝑝𝑒𝑟𝑐,𝑖 where 𝑖 = 1, … , 𝑛 represents all time-steps. From this vector, the sustained change metric, 

𝑌𝑠𝑢𝑠𝑡𝑎𝑖𝑛𝑒𝑑 , is calculated by  

𝑌𝑠𝑢𝑠𝑡𝑎𝑖𝑛𝑒𝑑 = Δ𝑌𝑝𝑒𝑟𝑐 ⋅ 𝐼(𝛥𝑌𝑝𝑒𝑟𝑐,𝑖,𝑖+1,𝑖+2 > 𝑡ℎ𝑟) 

Where 𝐼(𝑋 > 𝑡ℎ𝑟) is an indicator function which is 1 when the condition is fulfilled, and 0 otherwise. The 

condition in this case is whether or not there is more than a specified threshold, 𝑡ℎ𝑟, of change at the 

current time step and the following two time steps. For the Case study of Germany, the chosen threshold 

was 30%.  

 

Because the method can function with any length of image time-series, the amount of data needed is 

minimal. Computationally it does not take long to calculate. This makes it particularly scalable and trans-

ferable to other areas of interest. Particularly, it would perform fast on very large areas of interest. It can 

still provide a magnitude and direction of change. Particularly, the proposed sustained change metric 

can work with more than two images, in which case it can also provide information about the spatial and 

temporal dynamics of the changes being detected. One of the main disadvantages is that a threshold 

needs to be chosen. This is not different than other methods. In the sustained change methodology, the 

threshold chosen is in terms of percentage change within two consecutive images. If there are only two 

images compared, then no information about the spatio-temporal characteristics of disturbances can 

be inferred.  
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The BFAST method is a time-series analysis method. Its main advantage is that it can use all available 

data, and gaps are allowed in this context. The BFAST decomposes the time-series iteratively into a 

piecewise linear trend and a seasonal model, with the equation 

𝑌𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝑒𝑡 ,  

𝑡 = 1, … , 𝑛 

Where 𝑌𝑡 is the observed data at time 𝑡, 𝑇𝑡 is the trend component, 𝑆𝑡 is the seasonal component, and 

𝑒𝑡 is the remainder component. The model assumes 𝑇𝑡 is a piecewise linear model with 𝑚 breakpoints 

at times  𝑡1
∗, … , 𝑡𝑚

∗ , and thus:  

𝑇𝑡 = 𝛼𝑗 + 𝛽𝑗𝑡 

𝑡𝑗−1
∗ < 𝑡 ≤ 𝑡𝑗

∗ 

𝑗 = 1, … , 𝑚 

Where 𝛼 is the intercept of the linear model, and 𝛽 is the slope of the linear model. The seasonal com-

ponent is calculated by:  

𝑆𝑡 = ∑ 𝛾𝑖,𝑗(𝑑𝑡,𝑖 − 𝑑𝑡,0)

𝑠−1

𝑖=1

 

Where 𝑑𝑡,1 is a dummy variable, equal to 1 if 𝑡 is in season 𝑖 and 0 otherwise.  

To determine if a break is present in a time-series, the Moving SUM (MOSUM) test is implemented. This 

test is based on the residuals of an ordinary least squares (OLS) regression. If the test indicates a statis-

tically significant change (𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05), break points are calculated iteratively following the steps in 

[AD80].  

The method can also give information about the spatio-temporal dynamics of disturbances. A main 

disadvantage of the method is that it still takes considerable time to run. The BFAST Lite is a faster break-

point detection method, developed to improve the computational efficiency of BFSAT – it is several 

orders of magnitude faster to compute. For the case study of Hessen, the algorithm took 15 hours to 

run (BFAST: 6 days). Without massive parallel implementation, this method is therefore not able to scale 

up or transfer to larger areas of interest. A trade-off for running faster is that BFAST Lite does not de-

compose the time-series into seasonal and trend components. Therefore, it cannot give a detailed un-

derstanding of the temporal dynamics, seasonal effects, and inter/intra -annual dynamics. Another dis-

advantage is that it requires longer time series to be able to detect the seasonality, and a minimum of 4 

to 5 years of data are recommended.  

 

The fastCPD method is another time-series analysis methods. The method was chosen because it is a 

recent development with the express intention to reduce computing time of commonly used change 

detection methods. One of its advantages is that it computes the changes faster than BFAST Lite, with 

the area of interest in Hessen taking only 45 minutes to complete. It can also use all of the observations, 

even in the presence of missing data. Still, the computing time can still be a prohibiting factor when 

scaling the method up to much larger areas of interest. Another disadvantage is that it requires a time-

series model specification, and the optimal model is also location dependent.   
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5.2 Proof of Concept  

5.2.1 Methods selection 

5.2.1.1 Vitality 

Since VI are well-researched, have shown robustness and are comparably simple in use, a NDVI based 

method for tracking differences in forest area vitality between two points in time was established. It is a 

pixel-based approach showing forest condition and providing insight in vitality trends for all forest types. 

The Approach uses all Sentinel-2 data between 2017 and 2023, which were aggregated monthly and 

yearly via a best-pixel approach to gather mostly cloud free composites. To identify changes in forest 

vitality, the NDVI was calculated for each monthly composite, on which basis yearly NDVI maximum 

values were calculated in the next step. These maximum NDVI composites were then compared between 

years to identify forest disturbances and timber harvesting as well as forest areas without change or 

areas with regrowth. A time-series analysis of the monthly maximum NDVI composites reflects the NDVI-

based vitality trend that shows vitality gain and loss (Figure 7). 

 

Figure 7.  Visualisation vitality approach 

 

 

5.2.1.2 Disturbance 

Based on the vitality testing the EVI is chosen to detect forest disturbances. The methods tested in this 

analysis are common breakpoint or change detection algorithms available in open-source software. The 

satellite time-series data used for the analysis is derived from freely available data repositories. The 

methods were chosen to represent a variety of approaches that are complementary and state-of-the-

art. The methods chosen for comparison are the sustained change metric, the BFAST Lite algorithm, and 

the fastCPD method. These methods are all available within R packages.  

When considering which method to use, it is important to consider the scalability and transferability of 

each method. The methods chosen operate on pixel time-series, and so their implementation can be 

easily transferred to other areas of interest. However, the question of scalability relates also to their 
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computational run time. In the tested area of Hessen, the results indicate that the BFAST Lite and fast 

CPD methods are not scalable to larger areas of interest. The sustained change method is scalable to 

larger areas of interest and thus recommended for such cases. For the case of smaller areas of interest, 

the BFAST and BFAST Lite methods remain a viable option.  

Then test different BFAST Workflows and parameter settings (different models). 

 

5.2.2 Synthesis 

5.2.2.1 Vitality 

The chosen methodology was particularly convincing due to its simple applicability to large-scale data 

sets. By determining the NDVI values for two selected time periods, it has already been possible to obtain 

results for all forest areas in Ethiopia. This method can be used to analyse the vitality status of forest 

areas at a specific point in time as well as over a period of time.  

However, for a precise application to specific study areas such as forests, a land classification is required. 

Only in this way can NDVI values of forest areas be specifically distinguished from other dense vegeta-

tion areas. 

 

5.2.2.2 Disturbance 

The case study focused on forest area within the state of Hessen in Germany. All the methods were 

tested on the same data and compared according to the information they can provide regarding the 

disturbance, and their time of implementation.  

The presented methods give an insight into various characteristics of forest disturbances. The timing of 

the event is captured, its spatial extent, temporal duration, as well as the magnitude of disturbance can 

be analysed. It is important to note that these characteristics are affected by the temporal and spatial 

resolution of the data. Nevertheless, this methodology allows for an automated analysis of forest dis-

turbances that can be carried out in any area of interest around the globe.  

We choose the change threshold of 30% to showcase the method. The threshold of 20% shows similar 

spatial patterns, while higher thresholds fail to capture coherent spatial patterns. This can hint at a high 

false negative rate, as then it becomes unable to detect any change.  

The results for the sustained change method are shown in Figure 8. The maps show both the timing and 

the magnitude of the change. We observe large areas of sustained change throughout the analysed 

years. The calculation of disturbances took less than 10 seconds to run.  

The method is capable of detecting more than one disturbance in a single pixel. The map shows only 

the largest disturbance per pixel. This also highlights areas with consistently large magnitudes, e.g., the 

northwest region appears to have experienced widespread change in the years 2010/2011.   
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Figure 8. Sustained change results for Hessen, with a threshold of 30% change. 

 

5.3 Final Specification of EO solution 

5.3.1 Vitality  

The final vitality product is based on a comparison of two Sentinel 2 time series of any study area. 

Therefore, the spatial resolution of the output raster file is bound to the 10m resolution of the Sentinel 

2 product.  

The time series can be freely selected by the user, as can the desired study area. The input format for 

the desired study area can be any vector file, e.g. a Shapefile or Geojson.  

The calculation of the maximum NDVI is based on the formula: 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

 

The time change is calculated subtraction between the to time steps. 

The output raster is an 10m resolution NDVI normalized raster file, showing the vitality change between 

chosen time steps (Figure 9). 
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Figure 9. Visualisation of the final EO-vitality product 

 

 

5.3.2 Disturbance 

Disturbances are an integral part in forest ecosystems, influencing their stand, structure, and regenera-

tion. Although there is no single definition for a disturbance that satisfies all scientific and societal ques-

tions, it can be described as a negative deviation from the long-term phenology and thus a decrease in 

vitality.  

To detect vitality disturbances with remote sensing sensors, the stress symptoms must result in a suffi-

ciently large change in reflection for a sensor to measure them. Typical symptoms of deteriorated forest 

health causing a change in spectral reflectance are changes in pigment and foliage structure up to com-

plete discoloration, defoliation or even dieback. Spatial and temporal characteristics of the disturbance 

and the object of interest (from single tree level up to forest level) also influence greatly the detectability 

of vitality disturbances by sensors.  

From the methods tested and analysed in this section, we chose the sustained change method to meas-

ure vitality disturbance in the national demonstrator. It is a bi-temporal analysis method which requires 

only two images to compare and detect changes, an optional forest mask and the definition of an area 

of interest (Table 4). However, this method is extended to incorporate more time steps with minimal 

additional computational complexity. For two images at times 𝑛  and 𝑛 − 1,  𝑡𝑛 and  𝑡𝑛−1 respectively, 

the percentage change, Δ𝑌𝑝𝑒𝑟𝑐, is defined at each pixel by the equation:  

Δ𝑌𝑝𝑒𝑟𝑐,𝑛 = (𝑡𝑛 − 𝑡𝑛−1)/𝑡𝑛−1 ∗ 100 
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Table 4. Input datasets for sustained change calculation 

Dataset Use Characteristics 

Sentinel 2 Data Atmospherically corrected sur-

face reflectances in carto-

graphic geometry.  

Coverage: Gobal 

Resolution: 10 m 

Multispectral files (time span speci-

fied during data input in workflow) 

Copernicus Global Land Service Classification of land cover out 

of which the forest classes for 

the entire world can be ex-

tracted 

Single layer, GeoTIFF files.  

CRS: EPSG 4326 

Resolution: 100 m 

Version: 3.0 

Product years: 2015-2019 

Twelve forest classes 

Global Administrative Areas (GADM) Helpful in the standard deline-

ation of landscapes across dif-

ferent regions 

Shapefile/Geopackage 

Version: 4.1 

Up to four administrative levels 

 

Although the spatial extent, the temporal duration and the magnitude of the disturbance largely depend 

on the spatial and temporal resolution of the data, the selected methodology allows for an automated 

analysis of forest disturbances that can be carried out in any area of interest around the globe.  

The results for the sustained change method showed large areas of sustained change throughout the 

analysed years. Computationally it does not take long to calculate (the calculation of disturbances in the 

Hessen example took less than 10 seconds to run). These factors make this method particularly scalable 

and transferable to other areas of interest, with confidence that it would perform fast on very large areas. 

6 Change in Erosion Risk / Landslide Risk (FER) 

6.1 Theoretical background 

As Grimm from the European Soil Bureau (JRC) describes it in a report [AD24], soil erosion is a natural 

process, occurring over geological time, and most concerns about erosion are related to accelerated 

erosion, where the natural rate has been significantly increased by human action. These actions have 

generally been through stripping of natural vegetation for cultivation, indirect changes in land cover 

through grazing and controlled burning or wildfires, through re-grading of the land surface and/or a 

change in the intensity of land management, for example through poor maintenance of terrace struc-

tures. Increasing use of mechanised cultivation has also led to a substantial increase in rates of tillage 

erosion.  

Erosion literature commonly identifies ‘tolerable’ rates of soil erosion, but these rates usually exceed the 

rates, which can be balanced by weathering of new soil from parent materials, and can only be consid-

ered acceptable from an economic viewpoint. It is clear that on most productive land there is an overall 

loss of soil material that is becoming increasingly unacceptable. 

The Global Soil Partnership mechanism of the FAO [URL01] reports that soil erosion is one of the ten 

major soil threats, identified in the Status of the World's Soil Resources Report [AD25]. Soil erosion is 

defined as the accelerated removal of topsoil from the land surface mainly through water, wind and 

tillage. It occurs naturally under all climatic conditions and on all continents, but it is significantly in-

creased and accelerated by unsustainable human activities through intensive agriculture, deforestation, 
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overgrazing and improper land use changes. Soil erosion rates are much higher than soil formation rates, 

meaning its loss and degradation is not recoverable within a human lifespan. 

Soil erosion affects soil health and productivity by removing the highly fertile topsoil and exposing the 

remaining soil. It decreases agricultural productivity, degrades ecosystem functions, amplifies hydroge-

ological risk such as landslides or floods, causes significant losses in biodiversity, damage to urban in-

frastructure and, in severe cases, leads to displacement of human populations. Soil erosion can affect 

the infiltration, storage and drainage of water in the soil, resulting in waterlogging and water scarcity. 

Although soil erosion has a direct impact on farmers, it also has effects outside of agriculture. It has 

implications for our environment and health including on water quality, the energy sector, urban infra-

structure, and our landscapes. 

Each type of erosion (water, wind and tillage) involves distinct processes that detach and transport soil; 

hence each also requires different approaches to decrease associated rates of erosion. In some regions 

of the world all three types of erosion operate simultaneously in the landscape, and the identification of 

the processes occurring at a location is a key element of erosion control. Other forms of erosion may 

also be of importance. Poesen (2018) [AD26] includes soil erosion by land levelling and soil quarrying, 

by crop harvesting, and by explosion cratering and trench digging as other sources of erosion. As well, 

soil erosion by mass wasting - through slumping, debris flows and other means - is of major importance 

in particular landscapes. 

Water erosion occurs mainly when overland flow transports soil particles detached by drop impact or 

run-off, often leading to clearly defined channels such as rills or gullies (Figure 10). 

 

Figure 10. Schematic diagram of the position of sheet, rill, and gully erosion in a simple hillslope system 

 

Wind erosion occurs when dry, loose, bare soil is subjected to strong winds and soil particles are de-

tached from the soil surface and transported elsewhere. Tillage erosion is the direct down-slope move-

ment of soil by tillage implements and results in soil redistribution within a field. But the process that 

affects the greatest land area is water erosion. 

Vegetation has a significant effect on all of the water erosion processes, which can be partly explained 

because vegetation protects the soil from raindrop impact and retards the formation of surface seals; 

the former reduces raindrop detachment, and the latter decreases the volume of run-off. With increasing 

vegetation density and as we move from cropland to grassland to forest, both an increase in resistance 

by the soil to concentrated flow erosion and a decrease in run-off discharge during a rainfall event are 

expected [AD27]. 

Soil erosion can be reduced through the implementation of sustainable management practices such as 

keeping the soil surface always vegetated. This is particularly valid in agriculture where the use of cover 
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crops can have a significant impact. It can also be prevented by limiting tillage, or by building terraces. 

Policy-makers, by integrating these practices into effective policies, can help fostering their implemen-

tation on the ground. They can be supported by scientists, who continuously contribute to improve 

knowledge, and create innovative solutions and technologies to assess, control and prevent soil erosion. 

By raising awareness or by planting vegetation to protect the soil, in gardens or in scarcely vegetated 

areas, soil erosion can be extensively reduced. 

Scientific Trade-Off Analysis 

As explained by Grimm in the European Soil Bureau (JRC) report [AD24], various approaches can be 

adopted for assessing the soil erosion risk. A distinction can be made between expert-based and model-

based methods. 

For instance, the soil erosion risk map of Western Europe by De Ploey (1989) [AD28], is an example of 

an expert-based approach. The resulting map shows the areas where erosion processes are considered 

to be important by local experts. Nevertheless, a limitation of this approach is that the author does not 

define clearly the criteria used to delineate the areas deemed to be at risk [AD29]. 

Factorial scoring is another example of expert-based approach that can be used to assess erosion risk 

[AD30], based on factorial scores for soil erodibility (4 classes), erosivity (3 classes) and slope angle (4 

classes). The scores are multiplied, giving a combined score that represents potential erosion risk. To 

assess actual soil erosion risk, the potential erosion risk map is combined with a land cover factor (2 

classes). This approach has been used for the CORINE programme in 1992 to calculate a soil erosion risk 

map of the Mediterranean region. 

Montier et al. (1998) [AD31] also developed an expert-based method based on scores that are assigned 

to factors related to land cover (9 classes), the soil’s susceptibility to surface crusting (4 classes), slope 

angle (8 classes) and erodibility (3 classes). The method, used over the whole French territory, takes into 

account the different types of erosion that occur on cultivated areas, vineyards, mountainous areas, etc., 

accounting for the interaction between soil, vegetation, slope and climate to some extent. 

There are several other examples of expert-based methods developed for soil erosion risk assessment. 

For instance, the Global Assessment of Soil Degradation (GLASOD) project, whose main objective was 

to bring to the attention of decision makers the risks resulting from inappropriate land and soil man-

agement to the global well-being, allowed identifying areas with a subjectively similar severity of erosion 

risk, irrespective of the conditions that would produce this erosion. 

A fourth example of expert-based approach is the analysis and mapping of soil problem areas (Hot 

Spots), commissioned by the EEA and conducted using data from the literature on actual sediment losses 

for a number of locations in Europe. The aim was to emphasize on the need for a pan-European policy 

on soil, identifying ‘hot spots’ of degradation in Europe and examining environmental impacts leading 

to change and particularly degradation of soil function. In this case, expert knowledge is used to identify 

broad zones for which the erosion processes are broadly similar. However, the spatial representation of 

areas at risk is too general to be of use to policy makers. 

As for the expert-based methods, there is a lot of studies using model-based approaches for soil erosion 

risk assessment. A wide variety of models are available and can be classified in a number of ways. The 

subdivision can be done on the time scale for which a model can be used: some models are designed 

to predict long-term annual soil losses, while others predict single storm losses (event-based). Alterna-

tively, a distinction can be made between lumped models that predict erosion at a single point, and 

spatially distributed models. Another possible division is the one between empirical and physically-based 

models.  

The Universal Soil Loss Equation (USLE) is an empirical soil model developed by Wischmeier and Smith, 

(1978) [AD32]. Originally, USLE was developed mainly for soil erosion estimation in croplands or gently 
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sloping topography. The USLE quantifies soil erosion as the product of six factors representing rainfall 

and run-off erosivity (R), soil erodibility (K), slope length (L), slope steepness (S), cover and management 

practices (C), and supporting conservation practices (P) [AD33]. This empirical equation is based on the 

statistical analysis of more than 10,000 plot-years of data of sheet and rill erosion on plots and small 

watersheds [AD34]. 

The Revised Universal Soil Loss Equation (RUSLE) [AD35] has been developed to more accurately esti-

mate soil loss from both crop and rangeland areas, maintaining the basic structure of the USLE model 

but incorporating the results of additional research and experience obtained since the 1978 publication 

of USLE by Wischmeier and Smith. Originally, these models were designed to estimate long-term annual 

erosion rates on agricultural fields. 

Morgan et al. (1984) [AD36] presented a semi-empirical model for predicting annual soil loss from field-

sized areas on hillslopes. The Morgan–Morgan–Finney (MMF) model used the concepts proposed by 

Meyer and Wischmeier (1969) [AD37] to provide a stronger physical base than the Universal Soil Loss 

Equation [AD32], yet retain the advantages of an empirical approach regarding ease of understanding 

and availability of data. The model was validated by the authors using erosion plot data for 67 sites in 

12 countries and then applied to simulate erosion over a 100-year period in Malaysia under shifting 

cultivation. 

The MMF model separates the soil erosion process into two phases: the water phase and the sediment 

phase. The water phase determines the energy of the rainfall available to detach soil particles from the 

soil mass and the volume of run-off. In the erosion phase, rates of soil particle detachment by rainfall 

and run-off are determined along with the transporting capacity of run-off. 

A revised version of the MMF model has been proposed by Morgan (2001) [AD38], taking account the 

need to improve the description of the processes of erosion and the requirement of users for better 

guidance on the choice of input parameter values. Changes have been made to the way soil particle 

detachment by raindrop impact is simulated, accounting for plant canopy height and leaf drainage, and 

a component has been added for soil particle detachment by flow. 

The Agriculture Research Service of the United States Department of Agriculture (USDA-ARS) initiated 

the Water Erosion Prediction Project (WEPP) in 1989 in response to customers’ needs, followed by a 

decade of development and testing [AD39]. The simplest WEPP model simulation is for a single storm 

event and a single hillslope profile, where empirical equations are used to predict channel transmission 

losses and peak run-off rates. The WEPP model is a process-based, continuous, distributed parameter, 

hydrology, soil erosion prediction and sediment delivery system. Ascough et al. (1997) [AD40] reported 

that the WEPP model should not be used for watersheds larger than 40 ha and hillslope lengths exceed-

ing 100 m. 

In Europe, the Pan-European Soil Erosion Risk Assessment project [AD41] proposes a physically based 

and spatially distributed model combining the effect of topography, climate and soil into a single inte-

grated forecast of run-off and soil erosion on a 1 sq. km grid. The model addresses run-off more directly 

than other process-oriented models. 
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6.2 Proof of Concept  

6.2.1 Synthesis 

The literature review shows that the soil erosion risk assessment topic has been and is still largely studied. 

Despite the important number of expert-based approaches developed in the various studies and cover-

ing different areas of interest, a recurring problem with most methods based on scoring is that the 

results are affected by the way the scores are defined. In addition to this, classifying the source data 

results in information loss, and the results of the analyses may depend strongly on the class limits and 

the number of classes used. Moreover, unless some kind of weighting is used each factor is given equal 

weight, which is not realistic. If one decides to use some weighting, choosing realistic values for the 

weights may be difficult. The way in which the various factors are combined into classes that are func-

tional with respect to erosion risk (addition, multiplication) may pose problems also (Morgan, 1995) 

[RD19]. Finally, as factorial scoring produces qualitative erosion classes, the interpretation of these clas-

ses can be difficult. Therefore expert-based methods are not adapted in the context of SDG forest-

related indicators. 

On the contrary, the availability of digital datasets in recent years has facilitated application of the model-

based approach. Generally, the choice for a particular model largely depends on the purpose for which 

it is intended and the available data, time and money. Ideally, the model performances should be even 

whatever the location (transferability), and the data requested in input should not be too difficult to 

collect. Therefore, the model selection is guided by the following criteria: 

• The model must be adapted to assess the soil erosion risk at a global scale. 

• The datasets needed to feed the model have to be available globally. 

• To satisfy the previous criterion, the number of input datasets has to be reduced (as much as 

possible). 

• The model must be as simple as possible. 

 

Although the MMF model has proved simple to use and is able to give reasonable estimates of annual 

run-off and erosion, some input parameters are difficult to determine. In particular, the topsoil rooting 

depth gives problems of definition since it describes the effective hydrological depth within which the 

storage of water affects the generation of run-off. 

Regarding the WEPP model, Chandramohan et al. (2015) [AD42] noted that its major advantage over 

empirical models is that being a physically-based model, it takes into account processes/events that 

influence erosion. However, the model under-predicted soil loss because of the large data requirement 

and many number of model parameters related to soil and crop management which is impractical to 

collect or measure in studies of large scale. 

In the end, the RUSLE model seems to best fit to the specifications, in particular because according to 

(Grimm et. al., 2002) [AD24]: 

• It is one of the least data demanding erosion models that has been developed and applied widely 

at different scales. 

• It is widely used because of its relative simplicity and robustness [AD43]. 

• It has a standardized approach. 

 



 

D3.2 Algorithm Theoretical Baseline Documents 

ESA Contract No: 4000139583/22/I-DT 

IABG Ref.: TA-B- 004219 

Date: 2024/12/18 

 

 ESA4000139583-22-I-DT_EO4SDGForest_D32_v1.docx Page 28 

After this state-of-the-art review, the RUSLE model has been used and tested over various areas of in-

terest to analyse its performances in different configurations. To achieve that, some test sites have been 

chosen in several countries (Brazil, Colombia, Cameroon and Ivory Coast) and various datasets have been 

used in input to determine the influence on the model behaviour. 

The complete description of all this experimental phase (test sites, input datasets, algorithm implemen-

tation, results evaluation) is reported in the Proof of Concept (PoC) document. The analysis of all the 

tests conducted proves that the RUSLE model performances are satisfying. Therefore, it seems adapted 

in the context of this project. 

 

6.3 Final Specification of EO solution 

In theory, the mathematical implementation of the RUSLE model is based on the following equation: 

A = R x K x LS x C x P 

Where: 

• A is the average annual soil loss (in ton ha-1 year-1); 

• R is the rainfall erosivity factor (in MJ mm ha-1 h-1 year-1); 

• K is the soil erodibility factor (in ton ha h ha-1 MJ-1 mm-1); 

• LS is the slope length and steepness factor (dimensionless); 

• C is the cover management factor (dimensionless); 

• P is the conservation or support practices factor (dimensionless). 

 

Nevertheless, considering the very poor availability of P factor datasets (even more at the global scale), 

the final implementation of the equation only relies on the first four input parameters (R, K, LS and C), 

choosing to discard the P factor. 

For listing the datasets needed in input, a distinction has to be made between the layers available only 

at the European scale, or globally. This point is important because the global layers generally offer poorer 

spatial resolution than those covering only the European territory. Therefore, European datasets must 

be preferred when working over this continent. 

Table 5 provides an inventory of all the input datasets that can be used for this EO solution. It is worth 

mentioning that considering the results of experimental phase and the relatively limited added value 

brought by the SRTM layer, it has been decided not to keep it among the list of the input layers proposed 

to the user. 

 

Table 5. Input datasets inventory for the FER / Erosion Risk EO solution 

Dataset Use Characteristics 

Rainfall erosivity dataset in Europe Direct use as input parameter 

(R factor) 

Coverage: Europe 

Source: JRC/ESDAC 

Spatial resolution: 500m 

Publication: 2015 

Global rainfall erosivity dataset Direct use as input parameter 

(R factor) 

Coverage: Global 

Source: JRC/ESDAC 
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Dataset Use Characteristics 

Spatial resolution: 30 arc-seconds, 

~1km at the equator 

Publication: 2017 

Soil erodibility dataset in Europe Direct use as input parameter 

(K factor) 

Coverage: Europe 

Source: JRC/ESDAC 

Spatial resolution: 500m 

Publication: 2014 

Global soil erodibility dataset Direct use as input parameter 

(K factor) 

Coverage: Global 

Source: JRC/ESDAC 

Spatial resolution: 1km 

Publication: 2023 

Harmonized World Soil Database v2.0 Used to compute the K factor Coverage: Global 

Source: FAO 

Spatial resolution: 30 arc-seconds, 

~1km at the equator 

Publication: 2023 

European Digital Elevation Model (EU-

DEM) 

Used to compute the LS factor Coverage: Europe 

Source: EEA 

Spatial resolution: 1 arc-second, 

~30m 

Publication: 2016 

Copernicus DEM - Global Digital Ele-

vation Model (COP-DEM) 

Used to compute the LS factor Coverage: Global 

Source: EU Copernicus / ESA 

Spatial resolution: 1 arc-second, 

~30m 

Publication: 2019 

CORINE Land Cover Used to compute the C factor Coverage: Europe 

Source: EU Copernicus Land Moni-

toring Service 

Spatial resolution: 100m 

Publication: 2018 

Copernicus Global Land Cover Used to compute the C factor Coverage: Global 

Source: EU Copernicus Land Moni-

toring Service 

Spatial resolution: 100m 

Publication: 2019 

WorldCover Used to compute the C factor Coverage: Global 

Source: ESA 

Spatial resolution: 10m 

Publication: 2021 

 

For the rainfall erosivity and the soil erodibility parameters, the selection between the European or the 

global datasets will be controlled by a parameter indicating whether the area of interest is located in 

Europe or not, and filled by the user. For the others input parameters (DEM, LULC), the user will have the 
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possibility to choose the layers he wants to work with. Of course, the choice must be coherent with the 

area of interest location. For example, if the user wants to use the EU-DEM or the CORINE Land Cover 

outside Europe, the model will not be able to execute properly and will eventually crash. In addition, the 

user also has to provide an area of interest and an optical satellite image.  

Once all the input fields are completed, the user can launch the tool to compute the RUSLE model. First 

of all, the R and K factors are automatically derived and extracted from the appropriate input layer, based 

on the location value selected by the user. The LS factor can be directly calculated from the DEM layer, 

whereas it is a little bit more complex for the C factor. Indeed, the satellite imagery is used to compute 

the FCover which in turn is needed, in addition to the LULC, to calculate the C factor. 

When all the factors are ready, the RUSLE equation can be calculated to obtain the soil erosion suscep-

tibility values (in ton/ha/year). Once this average annual soil loss is available, it is then possible to obtain 

a soil erosion risk classification by applying some predefined thresholds, so that the final soil erosion 

risk can be assessed (ranging from very low/tolerable to severe). A final step consisting in intersecting 

the output layers (mean annual soil loss and soil erosion risk classification) with the area of interest is 

achieved to correspond to the user request. 

 

7 Landscape Metrics (FLM) 

7.1 Theoretical background 

Growing concerns over the loss of biodiversity have spurred land managers to seek better ways of man-

aging landscapes at a variety of spatial and temporal scales. The developing field of landscape ecology 

has provided a strong conceptual and theoretical basis for understanding landscape structure, function, 

and change [AD11, AD12, AD13]. Growing evidence that habitat fragmentation is detrimental to many 

species and may contribute substantially to the loss of regional and global biodiversity [AD14, AD15] 

has provided empirical justification for the need to manage entire landscapes, not just the components. 

The development of GIS (geographical information systems) technology has made a variety of analytical 

tools available for analysing and managing landscapes. In response to this growing theoretical and em-

pirical support and to technical capabilities, public land management agencies have recognized the need 

to manage natural resources at the landscape scale. A good example of these changes is in wildlife 

science. Wildlife ecologists often have assumed that the most important ecological processes affecting 

wildlife populations and communities operate at local spatial scales [AD16]. Vertebrate species richness 

and abundance, for example, often are considered functions of variation in local resource availability, 

vegetation composition and structure, and the size of the habitat patch [AD17]. Correspondingly, most 

wildlife research and management activities have focused on the within-patch scale, typically small plots 

or forest stands. However, there has been increasing awareness of the potential importance of coarse-

scale habitat patterns to wildlife populations and a corresponding surge in landscape ecological inves-

tigations that examine vertebrate distributions and population dynamics over broad spatial scales and 

including a landscape perspective in policies and guidelines for managing public lands.  

Landscape ecology embodies a way of thinking that many see as very useful for organizing land man-

agement approaches. Specifically, landscape ecology focuses on three characteristics of the landscape:  

1. Structure, the spatial relationships among the distinctive ecosystems or “elements” present—

more specifically, the distribution of energy, materials, and species in relation to the sizes, 

shapes, numbers, kinds, and configurations of the ecosystems. 

2. Function, the interactions among the spatial elements, that is, the flows of energy, materials, 

and species among the component ecosystems.  



 

D3.2 Algorithm Theoretical Baseline Documents 

ESA Contract No: 4000139583/22/I-DT 

IABG Ref.: TA-B- 004219 

Date: 2024/12/18 

 

 ESA4000139583-22-I-DT_EO4SDGForest_D32_v1.docx Page 31 

3. Change, the alteration in the structure and function of the ecological mosaic over time. 

Thus, landscape ecology involves the study of landscape patterns, the interactions among patches within 

a landscape mosaic, and how these patterns and interactions change over time. In addition, landscape 

ecology involves applying these principles to formulate and solve real-world problems. Landscape ecol-

ogy considers the development and dynamics of spatial heterogeneity and its effects on ecological pro-

cesses and the management of spatial heterogeneity [AD18] 

The disparity in definition of landscape makes it difficult to communicate clearly and even more difficult 

to establish consistent management policies. Definitions invariably include an area of land containing a 

mosaic of patches or landscape elements. Forman and Godron [AD11] define landscape as a “heteroge‐

neous land area composed of a cluster of interacting ecosystems that is repeated in similar form 

throughout.” The concept differs from the traditional ecosystem concept in focusing on groups of eco-

systems and the interactions among them. There are many variants of the definition depending on the 

research or management context. From a wildlife perspective, for example, landscape might be defined 

as an area of land containing a mosaic of habitat patches, within which a particular “focal” or “target” 

habitat patch often is embedded [AD16]. Because habitat patches can be defined only relative to a par-

ticular organism’s perception of the environment (that is, each organism defines habitat patches differ-

ently and at different scales), landscape size would differ among organisms [AD19]. However, landscapes 

generally occupy some spatial scale intermediate between an organism’s normal home range and its 

regional distribution. In other words, because each organism scales the environment differently (for ex-

ample, a salamander and a hawk view their environment on different scales), there is no absolute size 

for a landscape; from an organism-centered perspective, the size of a landscape differs depending on 

what constitutes a mosaic of habitat or resource patches meaningful to that organism. 

 

Patch—Landscapes are composed of a mosaic of patches [AD13]. Landscape ecologists have used sev-

eral terms to refer to the basic elements or units that make up a landscape, including ecotope, biotope, 

landscape component, landscape element, landscape unit, landscape cell, geotope, facies, habitat, and 

site [AD11]. We prefer the term “patch”; but any of these terms, when defined, are satisfactory according 

to the preference of the investigator. Like the landscape, patches comprising the landscape are not self-

evident; patches must be defined relative to the given situation. From a timber management perspective, 

for example, a patch may correspond to the forest stand; however, the stand may not function as a patch 

from a particular organism’s perspective. From an ecological perspective, patches represent relatively 

discrete areas (spatial domain) or periods (temporal domain) of relatively homogeneous environmental 

conditions, where the patch boundaries are distinguished by discontinuities in environmental character 

states from their surroundings of magnitudes that are perceived by or relevant to the organism or eco-

logical phenomenon under consideration [AD19]. From a strictly organism-cantered view, patches may 

be defined as environmental units between which fitness prospects or, “quality,” differ; although, in prac‐

tice, patches may be more appropriately defined by non-random distribution of activity or resource 

utilization among environmental units, as recognized in the concept of “grain response” [AD19]. 

Patches are dynamic and occur on many spatial and temporal scales that, from an organism-centered 

perspective, differ as a function of each animal’s perceptions [AD19]. A patch at any given scale has an 

internal structure reflecting patchiness at finer scales, and the mosaic containing that patch has a struc-

ture determined by patchiness at broader scales [AD20]. Thus, regardless of the basis for defining 

patches, a landscape does not contain a single patch mosaic but contains a hierarchy of patch mosaics 

across a range of scales. From an organism-centered perspective, the smallest scale at which an organ-

ism perceives and responds to patch structure is its “grain” [AD20] This lower threshold of heterogeneity 

is the level of resolution where the patch size becomes so fine that the individual or species stops re-

sponding to it, even though patch structure may exist at a finer resolution [AD21]. The lower limit to 

grain is set by the physiological and perceptual abilities of the organism and therefore differs among 
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species. Similarly, “extent” is the coarsest scale of heterogeneity, or upper threshold of heterogeneity, to 

which an organism responds [AD20, AD21]. At the level of the individual, extent is determined by the 

lifetime home range of the individual [AD20] and differs among individuals and species. More generally, 

however, extent differs with the organizational level (individual, population, metapopulation) under con-

sideration; for example, the upper threshold of patchiness for the population would probably greatly 

exceed that of the individual. From an organism-centred perspective, patches therefore can be defined 

hierarchically in scales ranging between the grain and extent for the individual, deme, population, or 

range of each species. 

Scientific Trade-Off Analysis 

Strengths and Weaknesses: 

Patch-level metrics (Table 6): 

Strengths: Patch-level metrics offer detailed information about individual patches, making them suitable 

for studying habitat quality, connectivity, and patch dynamics. They provide insights into patch-specific 

characteristics and can help identify critical patches for conservation efforts. For example, patch size 

metrics allow us to identify large core habitat areas that are essential for supporting viable populations 

of species. Shape metrics enable us to assess the complexity and irregularity of patch shapes, which can 

be important for understanding habitat suitability or vulnerability. Compactness indices help identify 

patches that are more likely to retain ecological processes due to their reduced perimeter-to-area ratio. 

Weaknesses: However, these metrics may not capture the overall landscape pattern or interactions be-

tween patches, limiting their ability to assess landscape-level processes and dynamics. While patch-level 

metrics provide valuable information about individual patches, they do not account for the arrangement 

or spatial relationships between patches. This limitation can hinder the understanding of landscape con-

nectivity and the movement of organisms across the landscape. Additionally, focusing solely on patch-

level metrics may overlook larger-scale landscape processes that operate at the landscape or regional 

scale. 

Class-level metrics (Table 6): 

Strengths: Class-level metrics provide valuable insights into the composition and distribution of different 

land cover classes within the landscape. They allow for the assessment of landscape heterogeneity, aid-

ing in identifying dominant land cover types and their spatial distribution. Class area metrics help identify 

the abundance and dominance of different land cover classes, providing information about the relative 

importance of each class within the landscape. Edge metrics offer insights into the spatial configuration 

and intermixing of different land cover classes, indicating areas of high ecological transition or interface. 

Shape metrics at the class level help assess the complexity and aggregation patterns of individual land 

cover classes, which can have implications for habitat suitability or ecological processes. Concretely, Li 

et al. [AD22], concluded that total number of patches, mean patch size, total edge density, and aggre-

gation index can reflect different patterns successfully at both landscape level and class level.  

Weaknesses: However, these metrics do not account for patch shape or configuration, which may limit 

their ability to capture fine-scale patterns and specific patch interactions. While class-level metrics pro-

vide valuable information about the composition and distribution of land cover classes, they do not 

explicitly consider the shape or arrangement of individual patches. This limitation can be problematic 

when analyzing landscapes with complex patch shapes or investigating the spatial relationships between 

specific patches. By focusing on class-level metrics alone, the analysis may overlook important patch-

specific dynamics and interactions. 

Landscape-level metrics (Table 6): 
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Strengths: Landscape-level metrics provide an integrated view of the landscape, capturing spatial pat-

terns, fragmentation, and diversity. They offer a holistic understanding of the landscape structure and 

dynamics, facilitating assessments of ecological processes and landscape-level conservation planning. 

Fragmentation metrics enable the identification of areas with high levels of patchiness or fragmentation, 

providing insights into landscape connectivity and potential barriers to species movement. Diversity 

metrics help assess the variety and evenness of land cover classes, highlighting areas of high ecological 

heterogeneity or biodiversity. Contagion metrics quantify the spatial arrangement and configuration of 

different land cover classes, aiding in understanding landscape connectivity and the potential spread of 

disturbances. 

Weaknesses: Nevertheless, these metrics lack detailed information about individual patches, potentially 

limiting the analysis of specific patch dynamics and interactions. While landscape-level metrics offer a 

comprehensive understanding of the overall landscape pattern, they may not provide detailed insights 

into the characteristics of individual patches. This limitation can hinder the assessment of specific patch 

dynamics, such as patch growth, contraction, or fragmentation. Additionally, landscape-level metrics 

may not capture fine-scale variations in patch shape or the spatial relationships between specific 

patches, which are crucial for certain ecological processes or conservation planning efforts. Although it 

is not exclusively a weakness of landscape-level metrics, it is also important to pay attention to redun-

dance of information from highly correlated indices. For example, Shannon-Weaver diversity, Shannon-

Weaver evenness, and dominance are three correlated landscape level metrics and should not be used 

together [AD22].  

Interspersion and Juxtaposition Index (IJI): 

Strengths: IJI is a versatile metric compatible with both vector and raster data. It directly measures patch 

type interspersion, providing valuable insights into the arrangement and adjacency of different patch 

types. IJI considers the spatial configuration and interspersion of patches, highlighting areas with high 

levels of patch mixing or intermingling. This metric is particularly useful for analyzing landscapes where 

patch adjacency plays a crucial role in ecological processes, such as dispersal, species interactions, or 

ecosystem functioning. By explicitly considering the interspersion of patch types, IJI offers a valuable 

perspective on the spatial relationships between different land cover classes. 

Weaknesses: However, IJI does not explicitly consider the dispersion of focal patch types and is limited 

to patch edge analysis. While IJI provides insights into the interspersion of patch types, it does not ac-

count for the dispersion or spatial extent of specific patch types within the landscape. This limitation can 

restrict the understanding of how individual patch types are dispersed or distributed across the land-

scape. Additionally, since IJI primarily focuses on patch edges, it may not fully capture the internal patch 

characteristics or variations in patch shape or configuration. 

 

Table 6. Landscape metrices (by type and level), their acronyms and units 

Scale Acronym Metric (units) 

Area metrics: 

  

 

Patch AREA Area (ha)  
 

Patch LSIM Landscape similarity index (percent)   
 

Class CA Class area (ha)   
 

Class %LAND Percentage of landscape    
 

Class/landscape TA Total landscape area (ha)   
 

Class/landscape LPI Largest patch index (percent)   
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Scale Acronym Metric (units) 
 

 

Class/landscape NP Number of patches    
 

Class/landscape PD Patch density (number/100 ha)   
 

Class/landscape MPS Mean patch size (ha)   
 

Class/landscape PSSD Patch size standard deviation (ha)  
 

Class/landscape PSCV Patch size coefficient of variation (percent) 
    

Edge metrics: 

 

      
 

Patch PERIM Perimeter (m)     
 

Patch EDCON Edge contrast index (percent)   
 

Class/landscape TE Total edge (m)    
 

Class/landscape ED Edge density (m/ha) 
 

Class/landscape CWED Contrast-weighted edge density (m/ha)   
 

Class/landscape TECI Total edge contrast index (percent)  
 

Class/landscape MECI Mean edge contrast index (percent)  
 

Class/landscape AWMECI Area-weighted mean edge contrast index (percent) 
    

Shape metrics: 

 

      
 

Patch SHAPE Shape index     
 

Patch FRACT Fractal dimension     
 

Class/landscape LSI Landscape shape index    
 

Class/landscape MSI Mean shape index    
 

Class/landscape AWMSI Area-weighted mean shape index   
 

Class/landscape DLFD Double log fractal dimension   
 

Class/landscape MPFD Mean patch fractal dimension   
 

Class/landscape AWMPFD Area-weighted mean patch fractal dimension  
    

Core area metrics: 

 

      
 

Patch CORE Core area (ha)   
 

Patch NCORE Number of core areas   
 

Patch CAI Core area index (percent)   
 

Class C%LAND Core area percentage of landscape  
 

Class/landscape TCA Total core area (ha)   
 

Class/landscape NCA Number of core areas   
 

Class/landscape CAD Core area density (number/100 ha)  
 

Class/landscape MCA1 Mean core area per patch (ha) 
 

Class/landscape CASD1 Patch core area standard deviation (ha) 
 

Class/landscape CACV1 Patch core area coefficient of variation (percent) 
 

Class/landscape MCA2 Mean area per disjunct core (ha)  
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Scale Acronym Metric (units) 
 

Class/landscape CASD2 Disjunct core area standard deviation (ha)  
 

Class/landscape CACV2 Disjunct core area coefficient of variation (percent) 
 

Class/landscape TCAI Total core area index (percent)  
 

Class/landscape MCAI Mean core area index (percent)  
    

Nearest neighbor metrics: 

  

 

Patch NEAR Nearest neighbor distance (m) 
 

Patch PROXIM Proximity index   
 

Class/landscape MNN Mean nearest neighbor distance(m) 
 

Class/landscape NNSD Nearest neighbor standard deviation(m) 
 

Class/landscape NNCV Nearest neighbor coefficient of variation(percent) 
 

Class/landscape MPI Mean proximity index  
    

Diversity metrics:     

 

    
 

Landscape SHDI Shannon’s diversity index  
 

Landscape SIDI Simpson’s diversity index  
 

Landscape MSIDI Modified Simpson’s diversity index 
 

Landscape PR Patch richness (number)  
 

Landscape PRD Patch richness density (number/100ha) 
 

Landscape RPR Relative patch richness (percent) 
 

Landscape SHEI Shannon’s evenness index  
 

Landscape SIEI Simpson’s evenness index  
 

Landscape MSIEI Modified Simpson’s evenness index 
    

  

 

Class/landscape IJI Interspersion and Juxtaposition index(percent) 
 

Landscape CONTAG Contagion index (percent)  

 

Trade-Off Analysis (Table 7): 

Detail vs. Generalization: Patch-level metrics offer detailed information about individual patches, allow-

ing for a fine-scale analysis of patch characteristics. In contrast, landscape-level metrics provide a more 

generalized view of the entire landscape pattern, capturing the overall landscape structure and dynam-

ics. The trade-off between detail and generalization lies in balancing the need for specific patch-level 

information with the broader insights gained from landscape-level metrics. 

Fine-scale vs. Landscape-scale: Patch-level metrics focus on the characteristics of individual patches, 

providing detailed insights into patch-specific processes and dynamics. On the other hand, landscape-

level metrics analyze the overall pattern and its ecological implications, allowing for assessments at the 

landscape or regional scale. The trade-off between fine-scale and landscape-scale analyses involves con-

sidering the appropriate scale for the research objectives and the ecological processes of interest. 
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Complexity vs. Simplicity: Patch-level metrics offer a more detailed and complex assessment of individual 

patches, capturing their size, shape, and other attributes. In contrast, class-level and landscape-level 

metrics provide a more simplified perspective by summarizing the characteristics of multiple patches or 

the entire landscape. The trade-off between complexity and simplicity involves deciding the level of 

detail required for the analysis and the complexity of the research questions being addressed. 

Table 7. Trade off analysis with commonly used landscape metrices 

Metric Strengths Weaknesses 

 

 

Patch Density: Strengths: Patch density provides infor-

mation about the abundance and distri-

bution of patches within the landscape. 

It helps identify areas with high frag-

mentation or patchiness, which can 

have implications for habitat suitability 

and species movement. 

 

Weaknesses: Patch density alone does not cap-

ture the configuration or interspersion of patches, 

limiting its ability to assess landscape connectivity 

or specific patch interactions. 

 

Mean Patch 

Size 

Mean patch size indicates the average 

size of patches within the landscape. It 

offers insights into the spatial extent of 

different land cover classes and can 

help identify dominant or core habitat 

areas. 

 

Mean patch size does not consider the shape or 

distribution of individual patches, potentially 

overlooking fine-scale patterns and variations in 

patch configuration. 

 

Edge Density: Edge density quantifies the amount of 

edge habitat within the landscape. It 

provides information about the poten-

tial interface between different land 

cover classes, which is important for 

species diversity and ecological pro-

cesses. 

 

Edge density does not distinguish between differ-

ent types of edges or consider the arrangement 

or interspersion of patches, limiting its ability to 

capture specific patch interactions or connectivity. 

 

Landscape 

Shape Index 

The landscape shape index measures 

the complexity and shape of the land-

scape boundary. It helps identify irregu-

lar or fragmented landscapes and can 

indicate potential barriers to species 

movement or dispersal. 

 

The landscape shape index does not provide de-

tailed information about patch-level characteris-

tics or consider the internal configuration of 

patches. 

 

Shannon's Di-

versity Index: 

 

Shannon's diversity index assesses the 

heterogeneity and evenness of land 

cover classes within the landscape. It 

provides insights into the biodiversity or 

ecological diversity of the landscape. 

Shannon's diversity index does not explicitly con-

sider the spatial configuration or arrangement of 

patches, limiting its ability to capture specific 

landscape patterns or interactions. 

Interspersion 

and Juxtaposi-

tion Index (IJI): 

 

Strengths: The IJI measures the inter-

spersion and adjacency of different 

patch types. It directly quantifies the 

spatial relationships between patches, 

Weaknesses: The IJI does not consider the disper-

sion or spatial extent of specific patch types, and 

it is limited to patch edge analysis. It may not 

capture fine-scale variations in patch shape or the 

spatial relationships between specific patches. 
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Metric Strengths Weaknesses 

 

 

providing valuable insights into patch 

mixing or intermingling. 

 

 

 

Regardless of the scale of analysis, the use of landscape indices requires understanding of the limitations 

and correct interpretation of results [AD04]. An important limitation with the hundreds of landscape 

metrics that are available today is that many of them are correlated to each other, making their inter-

pretation more difficult [AD07, AD08]. Useful metrices should be independent from each other, and 

many authors choose some sort of correlation algorithm to filter out duplicate information when select-

ing metrices [AD03, AD07]. The selection methods compared in this document included the popular 

Pearson correlation (alone) and Pearson correlation with beta ranking, which were carried out such that 

each metric was minimally correlated with other metrices [AD02, AD03]. 

Pearson correlation - assumes a linear relationship and that data is normally distributed. It is based on 

covariance and standard deviations of the original data and is defined by the equation: 

 

It is suitable for the data in our test site because it is continuous and measures the strength and direction 

of the linear relationship between variables. Its values range between -1 (perfect negative correlation) 

and 1 (perfect positive correlation), with 0 indicating no linear correlation. 

Correlation tests have been extensively used in the literature to select landscape metrices within sus-

tainable forest management [AD02-AD09]. It is often good practice to calculate multiple correlation 

coefficients to gain a better understanding of the data [AD10]. All correlation tests were run on the patch, 

class, and landscape levels. However, the number of classes need to be >4 for the correlation algorithms 

to have any significant results. In our case, with 3 classes per landscape, the decision for landscape metric 

selection on the class level needs to be performed by expert judgement.  

This trade-off analysis emphasizes the importance of considering multiple landscape metrics and their 

strengths and weaknesses in ecological research and conservation planning. By carefully selecting and 

integrating relevant metrics, researchers and land managers can gain a comprehensive understanding 

of landscape patterns, processes, and their implications for biodiversity conservation, ecosystem func-

tioning, and sustainable land use. 

 

7.2 Proof of Concept 

7.2.1 Methods selection 

The landscape metrics utilized in this analysis were calculated using established indices and commonly 

used software tools in landscape ecology. The data required for the analysis included spatial data sets 

representing land cover classes and appropriate boundary delineations. The metrics were derived 

through rigorous processing steps to ensure the accuracy and reliability of the results. Two widely used 

methods for metric selection were used here: Pearson correlations and β-score ranking followed by 

Pearson correlation. The underlying reason for the use of correlation algorithms was the need to filter 

redundant information from highly correlated landscape indices. Despite the abundance of metrics easily 
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calculable through libraries like 'landscapemetrics' and the risk of correlation between them, it is im-

portant to consider multiple metrics to capture different aspects of landscape patterns comprehensively.  

Therefore, when selecting a set of landscape indices for future analysis, the user must consider redun-

dancies and balance the strengths and weaknesses of each index. Moreover, the explored method with 

the β-score ranking provides an additional layer of complexity, which tests for an index ability to capture 

changes in landscape pattern [AD03]. In this case, two important criteria for selection are combined in 

this method, which is easily transferable to any type of landscape. The β-score and Pearson correlation 

method is thus chosen as comparatively more robust than the Pearson correlation method alone and is 

suggested for future analyses of new test sites.  

 

7.2.2 Synthesis 

7.2.2.1 Germany 

Our analysis focused on nine municipalities located in the German Federal State of Hesse: Alheim, Bebra, 

Cornberg, Nentershausen, Morschen, Spangenberg, Sontra, Rotenburg an der Fulda, and Waldkappel. 

On the patch level, Alheim was taken as an example landscape. On the landscape level, all landscapes 

are considered.  

Table 8 offers a preliminary set of landscape indices following the β-score and Pearson correlation 

method. The table provides complementary information which is intended to aid the user in the inter-

pretation of selected metrices. 

Table 8. Selected landscape metrices on patch (Alheim) and landscape (all municipalities) based on β score 

ranking and Pearson correlation values. Class level metrices selection must be performed based on expert 

knowledge. 

Acronym Level Type Description Measures 

Area Patch Area and edge Individual patch area. Basic but im-

portant metric to characterise a land-

scape.  

Composition 

Core area Patch Core area  Area within a patch that is not on the 

edge. Describes patch area and shape 

simultaneously. CORE values ≥ 0, in‐

creases without limit as the patch area 

increases and patch shape simplifies. 

Composition 

Shape Patch Shape It describes the ratio between the actual 

perimeter of the patch and the square 

root of patch area (adjusting for a 

square standard).  

Complexity 

Circle (related 

circumscribing 

circle) 

Patch Shape Ratio between patch area and the 

smallest circumscribing circle of the 

patch. Value comparable among 

patches with different area. 

Compactness 

Frac (Fractal di-

mension index) 

Patch Shape Based on patch perimeter and patch 

area. It is standardised, therefore scale 

independent. 

Complexity 

Enn (Euclidean 

nearest neigh-

bour) 

Patch Aggregation Distance [m] to the nearest neighbour-

ing patch of the same type, based on 

the shortest edge-to-edge distance. 

Isolation 
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Acronym Level Type Description Measures 

The metric is a simple way to describe 

patch isolation 

Prd (patch rich-

ness density) 

Landscape Diversity One of the simplest diversity and com-

position measures. It is a relative meas-

ure that is comparable among land-

scapes with different total areas. 

Composition, 

Diversity 

SHDI (Shannon's 

diversity index) 

Landscape Diversity Widely used metric in biodiversity and 

ecology and takes both the number of 

classes and the abundance of each class 

into account 

Diversity 

SIEI (Simpson's 

evenness index) 

Landscape Diversity Ratio between the actual Simpson's di-

versity index and the theoretical maxi-

mum Simpson's diversity index. Equals 

SIEI = 0 when only one patch is present 

and approaches SIEI = 1 when the num-

ber of class types increases while the 

proportions are equally distributed 

Diversity 

MSIEI (modified 

Simpson's even-

ness index) 

Landscape Diversity Range of values are 0 ≤ MSIEI < 1. 

MSIEI = 0 when only one patch is pre-

sent and approaches MSIEI = 1 as the 

proportional distribution of patches be-

comes more even 

Diversity 

 

By combining these landscape indices, researchers can gain a more comprehensive understanding of 

the landscape pattern, including patch abundance, size, configuration, interspersion, diversity, and edge 

habitat. It is essential to 1) consider the strengths and weaknesses of each index, 2) assess whether an 

index is capable of capturing changes in landscape patters through the calculation of the β-score, and 

3) filter highly correlated indices to avoid duplication of information. In this way, the user can better 

understand how landscape metrices complement each other to obtain a more robust assessment of 

landscape structure and its ecological implications. 

7.2.2.2 Vietnam 

The chosen AOI in Vietnam is located across the municipalities of Kỳ Anh, Kỳ Anh (Thị xã), Ba Đồn, Bố 

Trạch, Minh Hóa, Quảng Trạch, Tuyên Hóa, in the provinces of Hà Tĩnh, and Quảng Bình. The selected 

AOI has 199,854.84 hectares, out of which 74.68% is forest. Contrary to the example of Germany, the 

forest classification used for Vietnam is taken from the Copernicus Global Land Service. Of the forest 

land cover in the AOI, closed forest evergreen needle leaf is 0.03%, closed forest evergreen broad leaf is 

86.94%, closed forest unknown is 1.96%, open forest evergreen broad leaf is 2.08%, open forest unknown 

is 9% of the total. The other land cover categories are shrubs, herbaceous vegetation, cultivated and 

managed vegetation/agriculture, urban/built up, bare/sparse vegetation, permanent water bodies, her-

baceous wetland, closed forest evergreen needle leaf, closed forest evergreen broad leaf, closed forest 

unknown, open forest evergreen broad leaf, open forest unknown, and open sea. 

Table 9 offers a preliminary set of landscape indices following the β-score and Pearson correlation 

method. The table provides complementary information which is intended to aid the user in the inter-

pretation of selected metrices. 
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Table 9. Preliminary set of selected landscape metrices on patch, class and landscape levels for the Vietnamese 

AOI. Selection based on β score ranking and Pearson correlation values.  

Acronym Level Type Description Measures 

Area Patch Area and edge Individual patch area. Basic but im-

portant metric to characterise a 

landscape.  

Composition 

Contiguity in-

dex (contig) 

Patch Shape Contig assesses the spatial con-

nectedness (contiguity) of cells in 

patches. The metric coerces patch 

values to a value of 1 and the back-

ground to NA.  

Configuration 

Core area in-

dex (cai) 

Patch Core area  Area within a patch that is not on 

the edge. Describes patch area and 

shape simultaneously. CORE values 

≥ 0, increases without limit as the 

patch area increases and patch 

shape simplifies. 

Composition 

Number of 

core areas 

(Ncore) 

Patch Core area A cell is defined as core if the cell 

has no neighbour with a different 

value than itself (rook's case). The 

metric counts the disjunct core ar-

eas, whereby a core area is a 'patch 

within the patch' containing only 

core cells. It describes patch area 

and shape simultaneously (more 

core area when the patch is large, 

however, the shape must allow dis-

junct core areas). Thereby, a com-

pact shape (e.g. a square) will con-

tain less disjunct core areas than a 

more irregular patch. 

Composition/ 

Complexity 

Radius of gy-

ration (gyrate) 

Patch Area and edge The distance from each cell to the 

patch centroid is based on cell cen-

ter to centroid distances. The metric 

characterises both the patch area 

and compactness. 

Compactness 

Area Class Area and edge Individual patch area. Basic but im-

portant metric to characterise a 

landscape.  

Composition 

Cai_mn/cai_sd Class Core area The core area index is the percent-

age of core area in relation to patch 

area. A cell is defined as core area if 

the cell has no neighbour with a 

different value than itself (rook's 

case). 

Configuration 
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Acronym Level Type Description Measures 

Core area in-

dex (cai) 

Class Core area  Area within a patch that is not on 

the edge. Describes patch area and 

shape simultaneously. CORE values 

≥ 0, increases without limit as the 

patch area increases and patch 

shape simplifies. 

Composition 

Standard devi-

ation of patch 

core area 

(Core_sd) 

Class Core area It equals the standard deviation of 

the core area of each patch belong-

ing to class i. The core area is de-

fined as all cells that have no neigh-

bour with a different value than 

themselves (rook's case). The metric 

describes the differences among 

patches of the same class i in the 

landscape. 

Configuration 

Cpland Class Core area It is the percentage of core area of 

class i in relation to the total land-

scape area. A cell is defined as core 

area if the cell has no neighbour 

with a different value than itself 

(rook's case). Because CPLAND is a 

relative measure, it is comparable 

among landscapes with different 

total areas. 

Composition/ 

Complexity 

Dcore_mn Class Core area NCORE counts the disjunct core ar-

eas, whereby a core area is a 'patch 

within the patch' containing only 

core cells. Equals DCORE_MN = 0 if 

NCORE = 0 for all patches. In-

creases, without limit, as the num-

ber of disjunct core areas increases. 

Configura-

tion/ 

Complexity 

Area_mn Land-

scape 

Area and edge Individual patch area. Basic but im-

portant metric to characterise a 

landscape.  

Composition 

Aggregation 

index (ai) 

Land-

scape 

Aggregation It equals the number of like adja-

cencies divided by the theoretical 

maximum possible number of like 

adjacencies for that class summed 

over each class for the entire land-

scape. The metric is based on the 

adjacency matrix and the single-

count method 

Composition/ 

Complexity 

Core area in-

dex (cai) 

Land-

scape 

Core area  Area within a patch that is not on 

the edge. Describes patch area and 

shape simultaneously. CORE values 

Composition 
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Acronym Level Type Description Measures 

≥ 0, increases without limit as the 

patch area increases and patch 

shape simplifies. 

Mean of re-

lated circum-

scribing Circle 

(circle_mn) 

Land-

scape 

Shape Summarises the landscape as the 

mean of the related circumscribing 

circle of all patches in the land-

scape. CIRCLE describes the ratio 

between the patch area and the 

smallest circumscribing circle of the 

patch and characterises the com-

pactness of the patch. 

Compactness 

Prd (patch 

richness den-

sity) 

Land-

scape 

Diversity One of the simplest diversity and 

composition measures. It is a rela-

tive measure that is comparable 

among landscapes with different 

total areas. 

Composition, 

Diversity 

SHDI (Shan-

non's diversity 

index) 

Land-

scape 

Diversity Widely used metric in biodiversity 

and ecology and takes both the 

number of classes and the abun-

dance of each class into account 

Diversity 

SHEI (Shan-

non's evenness 

index) 

Land-

scape 

Diversity Ratio between the actual Shannon's 

diversity index and and the theoret-

ical maximum of the Shannon di-

versity index. It can be understood 

as a measure of dominance. 

Dominance 

 

7.3 Final Specification of EO solution 

The developing field of landscape ecology has provided a strong conceptual and theoretical basis for 

understanding landscape structure, function, and change. Landscape ecology involves the study of land-

scape patterns, the interactions among patches within a landscape mosaic, and how these patterns and 

interactions change over time. With the use of landscape metrics, these principles from landscape ecol-

ogy can be applied in a tangible, numerical way to formulate and solve real-world problems. Although 

there are known limitations to the use and applicability of landscape metrics (e.g. landscape and patch 

definition heavily context-dependent; results are scale dependant and difficult to transfer), they can offer 

a great potential for forest characterisation and monitoring, not to mention the integration of spatial 

pattern information in management processes. 

The landscape metrics utilized in this analysis were calculated using established indices and commonly 

used software tools in landscape ecology. The data required for the analysis included spatial data sets 

representing land cover classes and appropriate boundary delineations (Table 10). 

Table 10. Input datasets for Forest Landscape Metrics 

Dataset Use Characteristics 

Copernicus Global Land Service Classification of land cover out 

of which the forest classes for 

Coverage: Global 
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Dataset Use Characteristics 

the entire world can be ex-

tracted 

Single layer, GeoTIFF files.  

CRS: EPSG 4326 

Resolution: 100 m 

Version: 3.0 

Product years: 2015-2019 

Twelve forest classes 

Global Administrative Areas (GADM) Helpful in the standard deline-

ation of landscapes across dif-

ferent regions 

Coverage: Global 

Shapefile/Geopackage 

Version: 4.1 

Up to four administrative levels 

 

The forest classification provided by the Copernicus Global Land Service is the default classification layer 

for the calculation of landscape metrics. This layer, together with a user-defined area of interest (AOI), 

are the most important input parameters for the algorithm to run. The possibility of implementing of a 

user-defined forest classification instead of the default option is currently being tested.  

The output obtained after running the tool is a combination of landscape metrics (in .csv and .shp for-

mats, but also summarised in maps and plots). This allows researchers to gain a more comprehensive 

understanding of the landscape patterns, including patch abundance, size, configuration, interspersion, 

diversity, and edge habitat. It is important for the user to consider the strengths and weaknesses of each 

metric to gain a holistic understanding of its capabilities and limitations. To this end, accompanying 

information on the on each metric is also provided as an output after running the tool.   
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